We present a method to implement the quantum partial search of the database separated into any number of blocks with qudits, D-level quantum systems. Compared with the partial search using qubits, our method needs few...We present a method to implement the quantum partial search of the database separated into any number of blocks with qudits, D-level quantum systems. Compared with the partial search using qubits, our method needs fewer iteration steps and uses the carriers of the information more economically. To illustrate how to realize the idea with concrete physical systems, we propose a scheme to carry out a twelve-dimensional partial search of the database partitioned into three blocks with superconducting quantum interference devices (SQUIDs) in cavity QED. Through the appropriate modulation of the amplitudes of the microwave pulses, the scheme can overcome the non-identity of the cavity-SQUID coupling strengths due to the parameter variations resulting from the fabrication processes. Numerical simulation under the influence of the cavity and SQUID decays shows that the scheme could be achieved efficiently within current state-of-the-art technology.展开更多
金属磁微量能计(Metallic Magnetic Calorimeter,MMC)是一种具有极高能量分辨率的低温光子探测器。它通过顺磁材料磁化率在低温下随温度急剧变化的特性来实现对光子能量的精确测量。金属磁微量能计通常使用超导量子干涉器进行信号读出...金属磁微量能计(Metallic Magnetic Calorimeter,MMC)是一种具有极高能量分辨率的低温光子探测器。它通过顺磁材料磁化率在低温下随温度急剧变化的特性来实现对光子能量的精确测量。金属磁微量能计通常使用超导量子干涉器进行信号读出。研究介绍了一种用于金属磁微量能计信号读出的两级超导量子干涉器电路。初级放大器的设计采用了二阶梯度计构型,测试结果显示该设计方案有效的抑制了环境噪声的干扰。在液氦温度下,两级放大电路在磁通锁定环模式下实现了27400 V/A的跨阻增益,白噪声水平达到11.5 pA/Hz^(1/2)。展开更多
Superconducting quantum interference devices(SQUIDs) are low-noise amplifiers that are essential for the readouts of translation edge sensors(TESs). The linear flux range is an important parameter for SQUID amplifiers...Superconducting quantum interference devices(SQUIDs) are low-noise amplifiers that are essential for the readouts of translation edge sensors(TESs). The linear flux range is an important parameter for SQUID amplifiers, especially those controlled by high-bandwidth digital flux-locked-loop circuits. A large linear flux range conduces to accurately measuring the input signal and also increasing the multiplexing factor in the time-division multiplexed(TDM) readout scheme of the TES array. In this work, we report that the linear flux range of an SQUID can be improved by using self-feedback effect. When the SQUID loop is designed to be asymmetric, a voltage-biased SQUID shows an asymmetric current–flux(I–Φ) response curve. The linear flux range is improved along the I–Φ curve with a shallow slope. The experimental results accord well with the numerical simulations. The asymmetric SQUID will be able to serve as a building block in the development of the TDM readout systems for large TES arrays.展开更多
We describe the fabrication of high performance YBa2Cu3O7-δ (YBCO) radio frequency (RF) superconducting quantum interference devices (SQUIDs), which were prepared on 5 mm×5 mm LaAlO3 (LAO) substrates by ...We describe the fabrication of high performance YBa2Cu3O7-δ (YBCO) radio frequency (RF) superconducting quantum interference devices (SQUIDs), which were prepared on 5 mm×5 mm LaAlO3 (LAO) substrates by employing stepedge junctions (SEJs) and in flip-chip configuration with 12 mm×12 mm resonators. The step in the substrate was produced by Ar ion etching with step angles ranging from 47° to 61°, which is steep enough to ensure the formation of grain boundaries (GBs) at the step edges. The YBCO film was deposited using the pulsed laser deposition (PLD) technique with a film thickness half of the height of the substrate step. The inductance of the SQUID washer was designed to be about 157 pH. Under these circumstances, high performance YBCO RF SQUIDs were successfully fabricated with a typical flux-voltage transfer ratio of 83 mV/φ0, a white flux noise of 29 μφ0/√Hz, and the magnetic field sensitivity as high as 80 fT/√Hz. These devices have been applied in magnetocardiography and geological surveys.展开更多
The performance of a superconducting quantum interference device(SQUID) gradiometer is always determined by its pick-up coil geometry, such as baseline and radius. In this paper, based on the expressions for the cou...The performance of a superconducting quantum interference device(SQUID) gradiometer is always determined by its pick-up coil geometry, such as baseline and radius. In this paper, based on the expressions for the coupled flux threading a magnetometer obtained by Wikswo, we studied how the gradiometer performance parameters, including the current dipole sensitivity, spatial resolution and signal-to-noise ratio(SNR), are affected by its pick-up coil via Mat Lab simulation.Depending on the simulation results, the optimal pick-up coil design region for a certain gradiometer can be obtained.To verify the simulation results, we designed and fabricated several first-order gradiometers based on the weakly damped SQUID with different pick-up coils by applying superconducting connection. The experimental measurements were conducted on a simple current dipole in a magnetically shielding room. The measurement results are well in coincidence with the simulation ones, indicating that the simulation model is useful in specific pick-up coil design.展开更多
We experimentally demonstrate the observation of macroscopic resonant tunneling(MRT) phenomenon of the macroscopic distinct flux states in a radio frequency superconducting quantum interference device(rf-SQUID) un...We experimentally demonstrate the observation of macroscopic resonant tunneling(MRT) phenomenon of the macroscopic distinct flux states in a radio frequency superconducting quantum interference device(rf-SQUID) under a singlecycle sinusoidal driving.The population of the qubit exhibits interference patterns corresponding to resonant tunneling peaks between states in the adjacent potential wells.The dynamics of the qubit depends significantly on the amplitude,frequency,and initial phase of the driving signal.We do the numerical simulations considering the intra-well and interwell relaxation mechanism,which agree well with the experimental results.This approach provides an effective way to manipulate the qubit population by adjusting the parameters of the external driving field.展开更多
The superconducting quantum interference device(SQUID) amplifier is widely used in the field of weak signal detection for its low input impedance, low noise, and low power consumption. In this paper, the SQUIDs with...The superconducting quantum interference device(SQUID) amplifier is widely used in the field of weak signal detection for its low input impedance, low noise, and low power consumption. In this paper, the SQUIDs with identical junctions and the series SQUIDs with different junctions were successfully fabricated. The Nb/Al-AlOx/Nb trilayer and input Nb coils were prepared by asputtering equipment. The SQUID devices were prepared by a sputtering and the lift-off method.Investigations by AFM, OM and SEM revealed the morphology and roughness of the Nb films and Nb/Al-AlOx/Nb trilayer.In addition, the current–voltage characteristics of the SQUID devices with identical junction and different junction areas were measured at 2.5 K in the He^3 refrigerator. The results show that the SQUID modulation depth is obviously affected by the junction area. The modulation depth obviously increases with the increase of the junction area in a certain range. It is found that the series SQUID with identical junction area has a transimpedance gain of 58 Ω approximately.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.10774192)
文摘We present a method to implement the quantum partial search of the database separated into any number of blocks with qudits, D-level quantum systems. Compared with the partial search using qubits, our method needs fewer iteration steps and uses the carriers of the information more economically. To illustrate how to realize the idea with concrete physical systems, we propose a scheme to carry out a twelve-dimensional partial search of the database partitioned into three blocks with superconducting quantum interference devices (SQUIDs) in cavity QED. Through the appropriate modulation of the amplitudes of the microwave pulses, the scheme can overcome the non-identity of the cavity-SQUID coupling strengths due to the parameter variations resulting from the fabrication processes. Numerical simulation under the influence of the cavity and SQUID decays shows that the scheme could be achieved efficiently within current state-of-the-art technology.
文摘金属磁微量能计(Metallic Magnetic Calorimeter,MMC)是一种具有极高能量分辨率的低温光子探测器。它通过顺磁材料磁化率在低温下随温度急剧变化的特性来实现对光子能量的精确测量。金属磁微量能计通常使用超导量子干涉器进行信号读出。研究介绍了一种用于金属磁微量能计信号读出的两级超导量子干涉器电路。初级放大器的设计采用了二阶梯度计构型,测试结果显示该设计方案有效的抑制了环境噪声的干扰。在液氦温度下,两级放大电路在磁通锁定环模式下实现了27400 V/A的跨阻增益,白噪声水平达到11.5 pA/Hz^(1/2)。
基金Project supported by the Fund from China National Space Administration (CNSA) (Grant No. D050104)the Fund for Low Energy Gamma Ray Detection Research Based on SQUID Techniquethe Superconducting Electronics Facility (SELF) of Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences。
文摘Superconducting quantum interference devices(SQUIDs) are low-noise amplifiers that are essential for the readouts of translation edge sensors(TESs). The linear flux range is an important parameter for SQUID amplifiers, especially those controlled by high-bandwidth digital flux-locked-loop circuits. A large linear flux range conduces to accurately measuring the input signal and also increasing the multiplexing factor in the time-division multiplexed(TDM) readout scheme of the TES array. In this work, we report that the linear flux range of an SQUID can be improved by using self-feedback effect. When the SQUID loop is designed to be asymmetric, a voltage-biased SQUID shows an asymmetric current–flux(I–Φ) response curve. The linear flux range is improved along the I–Φ curve with a shallow slope. The experimental results accord well with the numerical simulations. The asymmetric SQUID will be able to serve as a building block in the development of the TDM readout systems for large TES arrays.
基金supported by the National Basic Research Program of China(Grant No.2011CBA00106)the National Natural Science Foundation of China(Grant No.11074008)the Research Fund for the Doctoral Program of Higher Education,China(Grant No.20100001120006)
文摘We describe the fabrication of high performance YBa2Cu3O7-δ (YBCO) radio frequency (RF) superconducting quantum interference devices (SQUIDs), which were prepared on 5 mm×5 mm LaAlO3 (LAO) substrates by employing stepedge junctions (SEJs) and in flip-chip configuration with 12 mm×12 mm resonators. The step in the substrate was produced by Ar ion etching with step angles ranging from 47° to 61°, which is steep enough to ensure the formation of grain boundaries (GBs) at the step edges. The YBCO film was deposited using the pulsed laser deposition (PLD) technique with a film thickness half of the height of the substrate step. The inductance of the SQUID washer was designed to be about 157 pH. Under these circumstances, high performance YBCO RF SQUIDs were successfully fabricated with a typical flux-voltage transfer ratio of 83 mV/φ0, a white flux noise of 29 μφ0/√Hz, and the magnetic field sensitivity as high as 80 fT/√Hz. These devices have been applied in magnetocardiography and geological surveys.
基金Project supported by the Key Project of Shanghai Zhangjiang National Innovation Demonstration Zone of the Special Development Fund,China(Grant No.2015-JD-C104-060)the National Natural Science Foundation of China(Grant No.61741122)
文摘The performance of a superconducting quantum interference device(SQUID) gradiometer is always determined by its pick-up coil geometry, such as baseline and radius. In this paper, based on the expressions for the coupled flux threading a magnetometer obtained by Wikswo, we studied how the gradiometer performance parameters, including the current dipole sensitivity, spatial resolution and signal-to-noise ratio(SNR), are affected by its pick-up coil via Mat Lab simulation.Depending on the simulation results, the optimal pick-up coil design region for a certain gradiometer can be obtained.To verify the simulation results, we designed and fabricated several first-order gradiometers based on the weakly damped SQUID with different pick-up coils by applying superconducting connection. The experimental measurements were conducted on a simple current dipole in a magnetically shielding room. The measurement results are well in coincidence with the simulation ones, indicating that the simulation model is useful in specific pick-up coil design.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474154,61371036,61571219,11227904,and 61501222)the Natural Science Fund for Distinguished Young Scholars of Jiangsu Province,China(Grant No.BK2012013)and PAPD
文摘We experimentally demonstrate the observation of macroscopic resonant tunneling(MRT) phenomenon of the macroscopic distinct flux states in a radio frequency superconducting quantum interference device(rf-SQUID) under a singlecycle sinusoidal driving.The population of the qubit exhibits interference patterns corresponding to resonant tunneling peaks between states in the adjacent potential wells.The dynamics of the qubit depends significantly on the amplitude,frequency,and initial phase of the driving signal.We do the numerical simulations considering the intra-well and interwell relaxation mechanism,which agree well with the experimental results.This approach provides an effective way to manipulate the qubit population by adjusting the parameters of the external driving field.
基金Project supported by the National Natural Science Foundation of China(Grant No.11653001)the National Basic Research Program of China(Grant No.2011CBA00304)Tsinghua University Initiative Scientific Research Program,China(Grant No.20131089314)
文摘The superconducting quantum interference device(SQUID) amplifier is widely used in the field of weak signal detection for its low input impedance, low noise, and low power consumption. In this paper, the SQUIDs with identical junctions and the series SQUIDs with different junctions were successfully fabricated. The Nb/Al-AlOx/Nb trilayer and input Nb coils were prepared by asputtering equipment. The SQUID devices were prepared by a sputtering and the lift-off method.Investigations by AFM, OM and SEM revealed the morphology and roughness of the Nb films and Nb/Al-AlOx/Nb trilayer.In addition, the current–voltage characteristics of the SQUID devices with identical junction and different junction areas were measured at 2.5 K in the He^3 refrigerator. The results show that the SQUID modulation depth is obviously affected by the junction area. The modulation depth obviously increases with the increase of the junction area in a certain range. It is found that the series SQUID with identical junction area has a transimpedance gain of 58 Ω approximately.