期刊文献+
共找到234篇文章
< 1 2 12 >
每页显示 20 50 100
Control system design for a pressure-tube-type supercritical water-cooled nuclear reactor via a higher order sliding mode method
1
作者 M.Hajipour G.R.Ansarifar 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第1期145-154,共10页
Nuclear power plants exhibit non-linear and time-variable dynamics.Therefore,designing a control system that sets the reactor power and forces it to follow the desired load is complicated.A supercritical water reactor... Nuclear power plants exhibit non-linear and time-variable dynamics.Therefore,designing a control system that sets the reactor power and forces it to follow the desired load is complicated.A supercritical water reactor(SCWR)is a fourth-generation conceptual reactor.In an SCWR,the non-linear dynamics of the reactor require a controller capable of control-ling the nonlinearities.In this study,a pressure-tube-type SCWR was controlled during reactor power maneuvering with a higher order sliding mode,and the reactor outgoing steam temperature and pressure were controlled simultaneously.In an SCWR,the temperature,pressure,and power must be maintained at a setpoint(desired value)during power maneuvering.Reactor point kinetics equations with three groups of delayed neutrons were used in the simulation.Higher-order and classic sliding mode controllers were separately manufactured to control the plant and were compared with the PI controllers speci-fied in previous studies.The controlled parameters were reactor power,steam temperature,and pressure.Notably,for these parameters,the PI controller had certain instabilities in the presence of disturbances.The classic sliding mode controller had a higher accuracy and stability;however its main drawback was the chattering phenomenon.HOSMC was highly accurate and stable and had a small computational cost.In reality,it followed the desired values without oscillations and chattering. 展开更多
关键词 supercritical water nuclear reactor Higher order sliding mode controller Steam temperature Steam pressure Point kinetics model
下载PDF
Corrosion of candidate materials for supercritical water-cooled reactor
2
作者 ZHANG Lefu~(1)),BAO Yichen~(1)) and TANG Rui~(2)) 1) School of Nuclear Sci.&Eng,Shanghai Jiao Tong Univ.,Shanghai 200240,China 2) National Key Laboratory for Nuclear Fuel and Materials,Nuclear Power Institute of China,Chengdu 610041,China 《Baosteel Technical Research》 CAS 2010年第S1期71-,共1页
Supercritical water reactor(SCWR) was proposed as a GenerationⅣconcept for building large capacity nuclear power plants.Comparing with the present GenerationⅡandⅢlight water reactors,SCWR possesses great advantages... Supercritical water reactor(SCWR) was proposed as a GenerationⅣconcept for building large capacity nuclear power plants.Comparing with the present GenerationⅡandⅢlight water reactors,SCWR possesses great advantages of 10%higher efficiency,simpler system design,better sustainability,and so on. However,the selection of materials for fuel cladding and reactor internals of SCWR is facing a great challenge. Corrosion in supercritical steam is of the first important issue to be solved to meet the stringent requirement of the reactor internal components.Corrosion screening tests were conducted on candidate materials for nuclear fuel cladding and reactor internals of supercritical water reactor(SCWR) in static and re-circulating autoclave at the temperatures of 550,600 and 650℃,pressure of about 25 MPa,deaerated or saturated dissolved hydrogen(STP). Nickel base alloy type Hastelloy C276,austenitic stainless steels type 304NG,AL-6XN,HR3C.NF709 and SAVE 25,ferritic/martensitic(F/M) steel type P92,P122 and 410,and oxide dispersion strengthened steel MA 956,are tested.This paper presents corrosion rate,and focuses on the formation and breakdown of corrosion oxide film,and proposes the future trend for the development of SCWR internal structure materials. 展开更多
关键词 supercritical water cooled reactor cladding material CORROSION protective oxide film
下载PDF
Continuous Production of Biodiesel from Soybean Oil Using Supercritical Methanol in a Vertical Tubular Reactor:I.Phase Holdup and Distribution of Intermediate Product along the Axial Direction 被引量:3
3
作者 周诚 王存文 +4 位作者 王为国 吴元欣 喻发全 池汝安 张俊峰 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第4期626-629,共4页
Production of biodiesel with supercritical methanol is a green synthesis process.A study was carried out in a vertical tubular reactor with a length of 3700 mm and a diameter of 20 mm at 275-375°C,15 MPa,and mola... Production of biodiesel with supercritical methanol is a green synthesis process.A study was carried out in a vertical tubular reactor with a length of 3700 mm and a diameter of 20 mm at 275-375°C,15 MPa,and molar ratio of methanol to soybean oil of 40︰1.The phase holdup,intermediate product,yield and axial distribution of methyl ester(ME) were investigated.Methanol and oil were mixed non-uniformly due to the formation of biodiesel and difference in their densities,even when the reaction system was in the supercritical state.From top to bottom,the phase holdup of methanol increased and that of oil decreased.As temperature increased,the concentrations of monoglyceride and diglyceride decreased gradually and the ME yield increased.When the temperature reached 300°C,the critical temperature of the system,the ME yield was 50%.Further increase in temperature led to a sharp in-crease of ME yield.However,at 375°C after 1200 s of reaction time,the decomposition rate of ME was greater than its formation rate,reducing the ME yield. 展开更多
关键词 supercritical methanol BIODIESEL vertical tubular reactor axial distribution intermediate product
下载PDF
Treatment of Acetonitrile by Catalytic Supercritical Water Oxidation in Compact-Sized Reactor
4
作者 Benjaporn Youngprasert Kunakorn Poochinda Somkiat Ngamprasertsith 《Journal of Water Resource and Protection》 2010年第3期222-226,共5页
The objective of this research was to study the treatment of acetonitrile by catalytic supercritical water oxi-dation in a compact-sized tubular reactor, with an internal volume of 4.71 mL. Manganese dioxide was used ... The objective of this research was to study the treatment of acetonitrile by catalytic supercritical water oxi-dation in a compact-sized tubular reactor, with an internal volume of 4.71 mL. Manganese dioxide was used as the catalyst and H2O2 was used as the oxidant. The oxidation of acetonitrile in supercritical water was studied at 400-500 oC, 25-35 MPa, the flow rate of 2-4 mL/min, the initial concentration of acetonitrile 0.077-0.121 M and the %excess O2 of 50-200%. As a result, the products were mainly N2, CO2 and CO and acetonitrile can be decomposed > 93 % within a very short contact time (1.45-6.19 s). The oxidation process was carried out with respect to the conversion of acetonitrile by 25 factorial design. Regression models were obtained for correlating the conversion of acetonitrile with temperature and flow rate. The complete oxida-tion can be achieved at a condition as moderate as 400 oC, 25 MPa with the flow rate of 2 mL/min. 展开更多
关键词 ACETONITRILE supercritical Water OXIDATION Compact-Sized reactor
下载PDF
Primary Breeding Ratio Analysis of an Improved Supercritical Water Cooled Fast Reactor
5
作者 Zijing Liu Jinsen Xie Lihua He 《World Journal of Nuclear Science and Technology》 2015年第4期253-264,共12页
The purpose of the study is to analyze the breeding ratio of a supercritical water cooled fast reactor (SCFR) and to increase the breeding core of SCFR. The sensitivities of assembly parameters, core arrangements and ... The purpose of the study is to analyze the breeding ratio of a supercritical water cooled fast reactor (SCFR) and to increase the breeding core of SCFR. The sensitivities of assembly parameters, core arrangements and fuel nuclide components to the breeding ratio are analyzed. In assembly parameters, the seed fuel rod diameter has higher sensitivities to the conversion ratio (CR) than the coolant tube diameter in blanket. Increasing heavy metal fraction is good to CR improvement. The CR of SCFR also increases with a reasonable core arrangement and Pu isotope mass fraction reduction in fuel, which can achieve more negative coolant void reactivity coefficient at the same time. The breeding ratio of SCFR is 1.03128 with a new core arrangement. And the coolant void reactivity coefficient is negative, which achieves a fuel breeding in initial fuel cycle. 展开更多
关键词 supercritical Water Cooled Fast reactor BREEDING Ratio COOLANT VOID COEFFICIENT
下载PDF
Simulation of heat transfer of supercritical water in obstacle-bearing vertical tube 被引量:2
6
作者 ZHANG Bo SHAN Jianqiang JIANG Jing 《Nuclear Science and Techniques》 SCIE CAS CSCD 2010年第4期241-245,共5页
The heat transfer coefficient is very low at bulk temperatures higher than the pseudo-critical point,because the supercritical pressure leads to a vapor-like fluid.In this paper,the heat transfer downstream an obstacl... The heat transfer coefficient is very low at bulk temperatures higher than the pseudo-critical point,because the supercritical pressure leads to a vapor-like fluid.In this paper,the heat transfer downstream an obstacle-bearing vertical tube is simulated by the CFD code of Fluent 6.1,using an adaptive grid in the supercritical condition.The reliable results are obtained by the RNG k-ε model using the enhanced wall treatment.The blockage ratio and local temperature of obstacle affect greatly the heat transfer enhancement,and the resultant influence region and decay trend are compared with the existing equations. 展开更多
关键词 软件模拟 垂直管 超临界水 热转移 传热系数 超临界压力 自适应网格 超临界条件
下载PDF
Analysis of prompt supercritical process with heat transfer and temperature feedback 被引量:2
7
作者 ZHU Bo ZHU Qian CHEN Zhiyun 《Nuclear Science and Techniques》 SCIE CAS CSCD 2009年第5期317-320,共4页
The prompt supercritical process of a nuclear reactor with temperature feedback and initial power as well as heat transfer with a big step reactivity (ρ0>β) is analyzed in this paper. Considering the effect of he... The prompt supercritical process of a nuclear reactor with temperature feedback and initial power as well as heat transfer with a big step reactivity (ρ0>β) is analyzed in this paper. Considering the effect of heat transfer on temperature of the reactor, a new model is set up. For any initial power, the variations of output power and reactivity with time are obtained by numerical method. The effects of the big inserted step reactivity and initial power on the prompt supercritical process are analyzed and discussed. It was found that the effect of heat transfer on the output power and reactivity can be neglected under any initial power, and the output power obtained by the adiabatic model is basically in accordance with that by the model of this paper, and the analytical solution can be adopted. The results provide a theoretical base for safety analysis and operation management of a power reactor. 展开更多
关键词 超临界 温度反应 核技术 核反应堆
下载PDF
Research on Critical Flow of Water under Supercritical Pressures in Nozzles 被引量:3
8
作者 Yuzhou Chen Minfu Zhao Chunsheng Yang Keming Bi Kaiwen Du Shuming Zhang 《Journal of Energy and Power Engineering》 2012年第2期201-208,共8页
An experiment on critical flow of water was conducted in two nozzles of 1.41 mm in diameter and 4.35 mm in length with rounded-edge and sharp-edge respectively, covering the ranges of inlet pressure of 22.1-29.1 MPa a... An experiment on critical flow of water was conducted in two nozzles of 1.41 mm in diameter and 4.35 mm in length with rounded-edge and sharp-edge respectively, covering the ranges of inlet pressure of 22.1-29.1 MPa and inlet temperature of 38-474 ℃. More than 200 data points were obtained and the characteristics and parametric trends were investigated. In the region of near and beyond pseudo-critical temperature the thermal-equilibrium is dominant, and the flow rate can be estimated by the modified homogeneous equilibrium model. In the below pseudo-critical region the results exhibit scattered feature as a result of hysteresis effect in the onset of vaporization, characterizing a bifurcation behavior. This effect is more significant in the nozzle with sharp-edge, especially at higher pressure. For temperature well below the pseudo-critical point, the flow is not at critical condition and the flow rate can be represented by the Bernoulli equation reasonably. 展开更多
关键词 Critical flow CHOKING NOZZLE supercritical pressure THERMAL-EQUILIBRIUM reactor safety.
下载PDF
Flow Instability in Parallel Channels with Water at Supercritical Pressure: A Review
9
作者 Edward Shitsi Seth Kofi Debrah +1 位作者 Vincent Yao Agbodemegbe Emmanuel Ampomah-Amoako 《World Journal of Engineering and Technology》 2018年第1期128-160,共33页
Research into flow instability at both subcritical and supercritical pressures has attracted attention in recent years because of its potential of occurrence in industrial heat transfer systems. Flow instability has t... Research into flow instability at both subcritical and supercritical pressures has attracted attention in recent years because of its potential of occurrence in industrial heat transfer systems. Flow instability has the potential to affect the safety of design and operation of heat transfer equipment. Flow instability is therefore undesirable and should be avoided?in the design and operation of industrial equipment. Rahman?et al. reviewed studies on supercritical water heat transfer with the aim of providing references for SCWR researchers. It was found out that most of the CFD studies and experimental studies were performed with single tube geometry due to the complexity of parallel channel geometry. Because studies performed with parallel channel geometry could provide detailed information to the design of the SCWR core, they called for more studies in parallel channel geometry at supercritical pressures in the future. In order to help understand how flow instability investigations are carried out and also highlight the need to understand flow instability phenomenon and equip the designers and operators of industrial heat transfer equipment with the needed knowledge on flow instability, this study carried out a review of flow instability in parallel channels with water at supercritical pressures. 展开更多
关键词 Parallel CHANNELS supercritical Pressure Flow INSTABILITY supercritical WATER Cooled reactor
下载PDF
Performance of Heat Transfer Correlations Adopted at Supercritical Pressures: A Review
10
作者 Edward Shitsi Seth Kofi Debrah +1 位作者 Vincent Yao Agbodemegbe Emmanuel Ampomah-Amoako 《World Journal of Engineering and Technology》 2018年第2期241-267,共27页
Research activities involving heat transfer at supercritical pressures have attracted attention in recent years because of possibility of increase in thermal output of heat transfer and industrial equipment. Because o... Research activities involving heat transfer at supercritical pressures have attracted attention in recent years because of possibility of increase in thermal output of heat transfer and industrial equipment. Because of high pressure and temperature conditions associated with heat transfer at supercritical pressures, only few experimental heat transfer studies are being carried out at supercritical conditions. The use of numerical tools for heat transfer and other related studies at supercritical pressures is increasing because of the high-pressure-temperature limitation of experimental studies at supercritical conditions. Heat transfer correlations implemented in these numerical tools are used to obtain numerical heat transfer data to complement experimental heat transfer data provided through experimental studies. In order to further broaden the understanding of fluid flow and heat transfer, this review examines the performance of heat transfer correlations adopted at supercritical pressures. It is found from the review that most of the correlations could predict heat transfer quite well in the low enthalpy region and few of the correlations could predict heat transfer in the high enthalpy region near critical and pseudo-critical conditions (heat transfer deteriorated conditions). However, no single heat transfer correlation is able to accurately predict all the experimental results presented in this work. 展开更多
关键词 HEAT TRANSFER CORRELATIONS supercritical Pressure HEAT TRANSFER DETERIORATION supercritical Water Cooled reactor SCWR
下载PDF
Development of a displacement-reactivity feedback model for dynamic behavior simulation in fast burst reactor
11
作者 Jiang-Meng Wang Hui Gao +2 位作者 Qi-Lin Xie Xiao-Qiang Fan Da-Zhi Qian 《Nuclear Science and Techniques》 SCIE CAS CSCD 2019年第5期82-91,共10页
In this study, a displacement-reactivity feedback model, which can directly represent the inherent ‘‘thermal expansion extinction effect'' of fast burst reactors(FBRs),was developed with the aid of the stati... In this study, a displacement-reactivity feedback model, which can directly represent the inherent ‘‘thermal expansion extinction effect'' of fast burst reactors(FBRs),was developed with the aid of the static neutron transport component of the FBR-MPC code. Dynamic behaviors of bursts in the Godiva I reactor were simulated by coupling the simplified multiphysics models consisting of the point kinetic equations for neutronics, adiabatic equation for temperature, and thermoelastic equations for displacement/stress with the developed model. The results were compared with the corresponding experimental data and those obtained using the traditional fission yield(temperature rise)-reactivity feedback models. It was found that the developed model can provide good results for the bursts with no or a small inertia effect. For the bursts with a prominent inertia effect, the smaller burst width and asymmetric distribution of the fission rate curve, noticed in the experiments but not evident using the traditional models, can be reproduced. In addition, the realistic oscillations in reactivity and fission rate caused by the core vibration, as well as the deeper sub-prompt criticality in the plateau following the burst, can be observed. Therefore, the developed displacement-reactivity feedback model can be expected to be an effective tool for calculating the dynamic behaviors of bursts. 展开更多
关键词 Displacement-reactivity feedback model PROMPT supercritical Coupled calculation FAST BURST reactor
下载PDF
圆管内氦氙混合气体与超临界二氧化碳换热特性对比分析 被引量:1
12
作者 宁可为 刘凯 +4 位作者 孙汝雷 赵富龙 游尔胜 余霖 谭思超 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第3期450-458,共9页
小型化、高紧凑反应堆系统是陆上多用途能源供给的研究重点,直接热-动循环下的能量转换对冷却剂工质选型提出极高要求。为了明确氦氙混合气体、超临界二氧化碳的工质适用性,本文采用数值模拟方法,对二者在圆管内的换热特性进行计算,对比... 小型化、高紧凑反应堆系统是陆上多用途能源供给的研究重点,直接热-动循环下的能量转换对冷却剂工质选型提出极高要求。为了明确氦氙混合气体、超临界二氧化碳的工质适用性,本文采用数值模拟方法,对二者在圆管内的换热特性进行计算,对比了2种冷却剂的物性,分析了不同加热功率、入口速度、入口温度对冷却剂换热系数的影响,拟合提出了2种冷却剂工质圆管内换热的经验模型。研究结果表明:反应堆在加热功率超过100 kW/m~2、入口流速大于10 m/s下,对流换热系数较大;氦氙混合气体入口温度在1 000~1 200 K、超临界二氧化碳在入口温度550~600 K附近时,对流换热系数存在极大值;在高雷诺数区(Re>10~4),2冷却剂的修正关系式与计算值吻合良好。本文计算能够为新型反应堆开发提供数据及模型基础。 展开更多
关键词 小型反应堆 氦氙混合气体 超临界二氧化碳 圆管通道 数值模拟 模型修正 换热特性 安全特性
下载PDF
喷嘴参数对超临界水热燃烧特性影响的模拟
13
作者 王芝安 兰忠 马学虎 《化工学报》 EI CSCD 北大核心 2024年第6期2190-2200,共11页
反应器喷嘴的作用是维持水热火焰在复杂流场中保持稳定。建立内预热式蒸腾壁反应器(IPTWR)内甲醇超临界水热燃烧过程计算流体力学模型,分析了喷嘴的材料热物性和结构参数对进料混合特性及火焰结构的影响规律。结果表明,喷嘴材料传热特... 反应器喷嘴的作用是维持水热火焰在复杂流场中保持稳定。建立内预热式蒸腾壁反应器(IPTWR)内甲醇超临界水热燃烧过程计算流体力学模型,分析了喷嘴的材料热物性和结构参数对进料混合特性及火焰结构的影响规律。结果表明,喷嘴材料传热特性的提高使水热火焰朝高温和广域的方向发展;氧气-辅热混合段直径由18 mm减小到14 mm,反应器轴向温度峰值由954.84 K升高到981.60 K,火焰位置向远端移动;随着喷嘴缩进深度减小,水热火焰逐渐向喷嘴出口聚拢,表现为火焰收缩现象。在此喷嘴结构参数范围内小直径的短氧气-辅热混合流道有助于水热火焰的温度升高和聚拢稳定。结果可为内预热式蒸腾壁反应器的喷嘴设计提供理论指导。 展开更多
关键词 喷嘴 反应器 超临界水 水热火焰 计算流体力学
下载PDF
煤炭超临界水制氢反应器内多相流场智能滚动预测研究
14
作者 丁家琦 刘海涛 +3 位作者 赵普 朱香凝 王晓放 谢蓉 《化工学报》 EI CSCD 北大核心 2024年第8期2886-2896,共11页
煤炭超临界水制氢技术在高温高压条件下利用超临界水充分气化煤炭,实现了高效低排放的转化和制氢过程。为解决因反应器内复杂多相流行为导致的仿真耗时问题,以及常见代理模型时序预测时间短、精度下降快等问题,提出基于本征正交分解(pro... 煤炭超临界水制氢技术在高温高压条件下利用超临界水充分气化煤炭,实现了高效低排放的转化和制氢过程。为解决因反应器内复杂多相流行为导致的仿真耗时问题,以及常见代理模型时序预测时间短、精度下降快等问题,提出基于本征正交分解(proper orthogonal decomposition,POD)和Koopman理论的深度学习模型POD-Koopman,用于捕捉和学习反应器内复杂流场的长时时空演变特征,实现数据驱动的长时滚动预测。测试结果表明其能在较小计算开销下准确滚动预测反应器内多相流场时变行为,助力下游制氢反应器工业化设计及优化任务。 展开更多
关键词 超临界水煤制氢 反应器 本征正交分解 Koopman 瞬态多相流 长时滚动预测
下载PDF
煤炭超临界水汽化技术研究进展
15
作者 郭栋 周臣臣 +2 位作者 葛志伟 于鹏峰 胡志勇 《现代化工》 CAS CSCD 北大核心 2024年第3期43-47,52,共6页
回顾了近年来煤炭超临界水汽化制氢的进展,介绍了制氢反应机理,系统总结了温度、浓度、停留时间和催化剂等因素对煤炭超临界水汽化制氢的影响及煤炭超临界水汽化反应装置的发展现状。针对现存问题对煤炭超临界水汽化制氢的未来前景进行... 回顾了近年来煤炭超临界水汽化制氢的进展,介绍了制氢反应机理,系统总结了温度、浓度、停留时间和催化剂等因素对煤炭超临界水汽化制氢的影响及煤炭超临界水汽化反应装置的发展现状。针对现存问题对煤炭超临界水汽化制氢的未来前景进行了展望。 展开更多
关键词 超临界水 汽化 制氢 反应装置
下载PDF
超临界水氧化技术中反应器腐蚀问题研究现状
16
作者 吕恒 侯淼昂 高小琦 《广州化工》 CAS 2024年第5期32-34,57,共4页
本研究介绍了超临界水氧化过程中反应器的腐蚀问题以及国内外关于此类问题的研究。目前研究主要使用特殊结构的反应器以降低腐蚀速率,或者利用晶界工程技术提升材料的抗氧化性解决腐蚀问题,但没有对反应器的腐蚀机制进行研究。因此,本... 本研究介绍了超临界水氧化过程中反应器的腐蚀问题以及国内外关于此类问题的研究。目前研究主要使用特殊结构的反应器以降低腐蚀速率,或者利用晶界工程技术提升材料的抗氧化性解决腐蚀问题,但没有对反应器的腐蚀机制进行研究。因此,本文提出通过试验研究和数值模拟分析探究反应器的腐蚀机制。这对超临界水氧化技术中的发展和应用具有重要的意义。 展开更多
关键词 超临界水氧化技术 反应器腐蚀 晶界工程 数值模拟 腐蚀机制
下载PDF
Numerical investigation on cold flow dynamics of supercritical water fluidized bed reactor with inclined distributor: Design and scale up
17
作者 Yinghui Wu Hao Zhang +1 位作者 Xizhong An Zhiye Chen 《Particuology》 SCIE EI CAS CSCD 2022年第8期90-102,共13页
Supercritical water fuidized bed reactor(SCWFBR)is a novel concept for the gasification of coal and biomass to produce hydrogen.In this work,to enhance the mixing in the axial direction,an inclined distributor is intr... Supercritical water fuidized bed reactor(SCWFBR)is a novel concept for the gasification of coal and biomass to produce hydrogen.In this work,to enhance the mixing in the axial direction,an inclined distributor is introduced to optimize the flow dynamics in SCWFBR with partitioned fluid supply.Through numerical simulations based on the two fluid model(TFM),the effects of the inclined distributor structure and operating parameters on the solid distribution and the residence time are evaluated with the optimal values determined.Numerical results show that,area ratio-2:1,scw velocity ratio-3:1,flow ratio=3.36:1 and inclination angle=20°are the optimal design in this paper.A predictive correlation of the minimum fluidization velocity for the improved SCWFBR is also proposed based on the numerical data.The average error between the correlation and numerical simulation results is approximately 1.4%which strongly demonstrates its capability.Finally,based on the optimal design,the labscale reactoris further scaled up and the studies about twoscale-uprules are carried out.Only the cold flow is simulated in this study without considering chemical reaction which would be involved in future work. 展开更多
关键词 Numerical simulation Flowdynamics supercritical water fluidized bed reactor Inclineddistributor Scale-up
原文传递
超临界水氧化反应器数值分析
18
作者 姒伟华 李风风 王四芳 《一重技术》 2024年第3期1-4,8,共5页
蒸发壁式反应器作为超临界水氧化系统的核心设备,反应区温度及反应器出口温度是指导反应器结构设计的关键因素。通过建立反应器三维几何模型,采用CFD数值模拟手段,计算蒸发壁式反应器内部流场分布,了解分布规律,为反应器结构设计提供依... 蒸发壁式反应器作为超临界水氧化系统的核心设备,反应区温度及反应器出口温度是指导反应器结构设计的关键因素。通过建立反应器三维几何模型,采用CFD数值模拟手段,计算蒸发壁式反应器内部流场分布,了解分布规律,为反应器结构设计提供依据,保证设备安全稳定运行。 展开更多
关键词 三维模型 数值分析 超临界水氧化 反应器
下载PDF
过程强化技术在化工中的应用研究进展
19
作者 刘心洪 朱长辉 +3 位作者 田保河 江泽琦 张旭东 朱文超 《防化研究》 2024年第2期32-43,共12页
在化学工业中,过程强化技术是通过采用新装备和新方法显著提升传递或反应过程速率的技术。它能够发挥催化剂、工艺、装备等的全部潜能,使化工设备体积更小、化学反应速度更快,安全性更高,成本更低。本文从新材料(介质)强化、外场协同强... 在化学工业中,过程强化技术是通过采用新装备和新方法显著提升传递或反应过程速率的技术。它能够发挥催化剂、工艺、装备等的全部潜能,使化工设备体积更小、化学反应速度更快,安全性更高,成本更低。本文从新材料(介质)强化、外场协同强化、核心反应器强化、系统耦合强化等方面综述了典型化工过程强化技术的原理及应用,以期促进化学工业向节能、环保、高效、绿色发展模式转变。 展开更多
关键词 过程强化 新催化技术 超临界流体 离子液体 超重力 微波 微反应器 静态混合器
下载PDF
超临界水氧化技术中盐沉积问题的研究进展 被引量:17
20
作者 徐东海 王树众 +3 位作者 张峰 黄传宝 唐兴颖 郭洋 《化工进展》 EI CAS CSCD 北大核心 2014年第4期1015-1021,1029,共8页
超临界水氧化技术在处理高浓度难降解有机废水时具有去除率高、反应速度快、无二次污染等独特的优势,但存在盐沉积引起的反应器堵塞问题。本文针对国内外盐沉积问题研究的技术现状进行系统综述,归纳了盐沉积问题的研究方法,总结了部分... 超临界水氧化技术在处理高浓度难降解有机废水时具有去除率高、反应速度快、无二次污染等独特的优势,但存在盐沉积引起的反应器堵塞问题。本文针对国内外盐沉积问题研究的技术现状进行系统综述,归纳了盐沉积问题的研究方法,总结了部分盐在超临界水中的溶解度以及沉积和分离特性,阐述了盐沉积理论及从源头控制盐沉积途径,介绍了避免盐沉积引起反应器堵塞的技术方法,并对后续的研究进行了展望。指出盐沉积问题的解决还需进一步研究盐形成和沉积机理,建立不同盐类混合物的相图,研究盐沉积动力学和多组分系统的相行为,考察多组分盐之间的相互作用机制。这些信息有利于研究人员掌握超临界水氧化技术中盐沉积问题的基础知识和发展方向,有助于在实际工程应用中指导反应器结构设计和优化运行条件。 展开更多
关键词 超临界水 超临界水氧化 盐沉积 堵塞 反应器
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部