Supersonic model combustors using two-stage injections of supercritical kerosene were experimentally investigated in both Mach 2.5 and 3.0 model combustors with stagnation temperatures of approximately 1,750 K. Superc...Supersonic model combustors using two-stage injections of supercritical kerosene were experimentally investigated in both Mach 2.5 and 3.0 model combustors with stagnation temperatures of approximately 1,750 K. Supercritical kerosene of approximately 760 K was prepared and injected in the overall equivalence ratio range of 0.5-1.46. Two pairs of integrated injector/flameholder cavity modules in tandem were used to facilitate fuel-air mixing and stable combustion. For single-stage fuel injection at an upstream location, it was found that the boundary layer separation could propagate into the isolator with increasing fuel equivalence ratio due to excessive local heat release, which in turns changed the entry airflow conditions. Moving the fuel injection to a further downstream location could alleviate the problem, while it would result in a decrease in combustion efficiency due to shorter fuel residence time. With two-stage fuel injections the overall combustor performance was shown to be improved and kerosene injections at fuel rich conditions could be reached without the upstream propagation of the boundary layer separation into the isolator. Furthermore, effects of the entry Mach number and pilot hydrogen on combustion performance were also studied.展开更多
The convective heat transfer of supercritical-pressure RP-3(Rocket Propellant 3)aviation kerosene in a horizontal circular tube has been numerically studied,focusing mainly on the non-uniform heat transfer deteriorati...The convective heat transfer of supercritical-pressure RP-3(Rocket Propellant 3)aviation kerosene in a horizontal circular tube has been numerically studied,focusing mainly on the non-uniform heat transfer deterioration along the circumferential direction.The governing equations of mass,momentum and energy have been solved using the pressure-based segregated solver based on the finite volume method.The re-normalization group(RNG)k-εturbulence model with an enhanced wall treatment was selected.Considering the heat conduction in the solid wall,the mechanism of heat transfer deterioration and the buoyancy effect on deteriorated heat transfer were discussed.The evolution of secondary flow was analyzed.Effects of the outer-wall heat flux,mass flux,pressure and tube thermal conductivity on heat transfer were investigated.Moreover,the buoyancy criterion and the heat transfer correlation were obtained.Results indicate that the poor flow performance of near-wall fluid causes the pseudo-film boiling,further leads to the heat transfer deterioration.The strong buoyancy has an effect of enhancing the heat transfer at the bottom of tube,and weakening the heat transfer at the top of tube,which results in the non-uniform inner-wall temperature and heat flux distributions.Decreasing the ratio of outer-wall heat flux and mass flux,increasing the pressure could weaken the heat transfer difference along the circumferential direction,while the effect of thermal conductivity of tube on the circumferential parameters distributions is more complicated.When the buoyancy criterion of(Grq/Grth)max≤0.8 is satisfied,the effect of buoyancy could be ignored.The new correlations work well for non-uniform heat transfer predictions.展开更多
A research on the heat transfer performance of kerosene flowing in a vertical upward tube at supercritical pressure is presented.In the experiments,insights are offered on the effects of the factors such as mass flux,...A research on the heat transfer performance of kerosene flowing in a vertical upward tube at supercritical pressure is presented.In the experiments,insights are offered on the effects of the factors such as mass flux,heat flux,and pressure.It is found that increasing mass flux reduces the wall temperature and separates the experimental section into three different parts,while increasing working pressure deteriorates heat transfer.The extended corresponding-state principle can be used for evaluating density and transport properties of kerosene,including its viscosity and thermal conductivity,at different temperatures and pressures under supercritical conditions.For getting the heat capacity,a Soave–Redlich–Kwong(SRK)equation of state is used.The correlation for predicting heat transfer of kerosene at supercritical pressure is established and shows good agreement with the experimental data.展开更多
The effect of dissolved oxygen(DO) on the stress corrosion cracking(SCC) of 310 S in supercritical water was investigated using slow-strain-rate tensile tests.The tensile properties, fracture morphology, and distribut...The effect of dissolved oxygen(DO) on the stress corrosion cracking(SCC) of 310 S in supercritical water was investigated using slow-strain-rate tensile tests.The tensile properties, fracture morphology, and distribution of the chemical composition of the oxide were analyzed to evaluate the SCC susceptibility of 310 S. The results showed that the rupture elongation decreased significantly as the degree of DO increased. A brittle fracture mode was observed on the fracture surface, and only intergranular cracking was observed on the surface of the gauge section, regardless of the DO. Cracks were widely distributed on the gauge surface near the fracture surface.Oxides were observed in the cracks with two-layered structures, i.e., a Cr-rich inner oxide layer and an Fe-rich outer oxide layer.展开更多
In this paper, compressible flow of aviation kerosene at supercritical conditions has been studied both numerically and experimentally. The thermophysical properties of supercritical kerosene are calculated using a 10...In this paper, compressible flow of aviation kerosene at supercritical conditions has been studied both numerically and experimentally. The thermophysical properties of supercritical kerosene are calculated using a 10- species surrogate based on the principle of extended corresponding states (ECS). Isentropic acceleration of supercritical kerosene to subsonic and supersonic speeds has been analyzed numerically. It has been found that the isentropic relationships of supercritical kerosene are significantly dif- ferent from those of ideal gases, A two-stage fuel heating and delivery system is used to heat the kerosene up to a tem- perature of 820 K and pressure of 5.5 MPa with a maximum mass flow rate of 100 g/s. The characteristics of supercritical kerosene flows in a converging-diverging nozzle (Laval nozzle) have been studied experimentally. The results show that stable supersonic flows of kerosene could be established in the temperature range of 730 K-820 K and the measurements in the wall pressure agree with the numerical calculation.展开更多
In view of the difficulty of kerosene-air detonation faced by the application of rotating detonation to aviation engines,in order to improve the kerosene detonation activity,the atmospheric pressure gliding arc plasma...In view of the difficulty of kerosene-air detonation faced by the application of rotating detonation to aviation engines,in order to improve the kerosene detonation activity,the atmospheric pressure gliding arc plasma is used to conduct secondary adjustment of the pre-combustion cracking products.The results show that the components with larger molecular weight in the pre-combustion cracking products,such as ethylene and methane,can be cracked into highly active species of hydrogen and acetylene by gliding arc plasma.With the increase of the fuel ratio of pre-combustion cracking,the plasma has a more significant effect on the adjustment of high active components.However,as the flow rate of the cracking gas treated by plasma increases,the adjustment effect is obviously reduced.展开更多
Thermal cracking of China No.3 aviation kerosene was studied experimentally and analytically under supercritical conditions relevant to regenerative cooling system for Mach-6 scramjet applications. A two-stage heated ...Thermal cracking of China No.3 aviation kerosene was studied experimentally and analytically under supercritical conditions relevant to regenerative cooling system for Mach-6 scramjet applications. A two-stage heated tube system with cracked products collection/analysis was used and it can achieve a fuel temperature range of 700―1100 K,a pressure range of 3.5―4.5 MPa and a residence time of ap-proximately 0.5―1.3 s. Compositions of the cracked gaseous products and mass flow rate of the kerosene flow at varied temperatures and pressures were obtained experimentally. A one-step lumped model was developed with the cracked mixtures grouped into three categories:unreacted kerosene,gaseous products and residuals including liquid products and carbon deposits. Based on the model,fuel conversion on the mass basis,the reaction rate and the residence time were estimated as functions of temperature. Meanwhile,a sonic nozzle was used for the control of the mass flow rate of the cracked kerosene,and correlation of the mass flow rate gives a good agreement with the measurements.展开更多
In this paper,characteristics of flow and convective heat transfer of China RP-3 kerosene in straight circular pipe were numerically studied.Navier-Stokes equations were solved using RNG k-turbulence model with low Re...In this paper,characteristics of flow and convective heat transfer of China RP-3 kerosene in straight circular pipe were numerically studied.Navier-Stokes equations were solved using RNG k-turbulence model with low Reynolds number correction.The thermophysical and transport properties of the China RP-3 kerosene were calculated with a 10-species surrogate and the extended corresponding state method(ECS) combined with Benedict-Webb-Rubin equation.The independence of grids was first studied and the numerical results were then compared with experimental data for validation.Under flow conditions given in the paper,the results show that deterioration of convective heat transfer occurs when the wall temperature is slightly higher than the pseudo-critical temperature of kerosene for cases with wall heat flux of 1.2 and 0.8 MW/m 2.The degree of the heat transfer deterioration is weakened as the heat flux decreases.The deterioration,however,does not happen when the heat flux on the pipe wall is reduced to 0.5 MW/m 2.Based on the analysis of the near-wall turbulent properties,it is found that the heat transfer deterioration and then the enhancement are attributed partly to the change in the turbulent kinetic energy in the vicinity of pipe wall.The conventional heat transfer relations such as Sieder-Tate and Gnielinski formulas can be used for the estimation of kerosene heat convection under subcritical conditions,but they are not capable of predicting the phenomenon of heat transfer deterioration.The modified Bae-Kim formula can describe the heat transfer deterioration.In addition,the frictional drag would increase dramatically when the fuel transforms to the supercritical state.展开更多
Continuous-flow reactor experiments were carried out to study coke formation from thermal crack-ing of home-made jet fuel RP-3 under supercritical con-ditions.The mechanism and precursor of coke forming were analyzed....Continuous-flow reactor experiments were carried out to study coke formation from thermal crack-ing of home-made jet fuel RP-3 under supercritical con-ditions.The mechanism and precursor of coke forming were analyzed.The starting cracking temperature of RP-3 fuel was determined to be 471.8uC by differential scan-ning calorimetry(DSC).Temperature-programmed oxidation and scanning electron microscopy(SEM)characterizations of the stressed tubes showed that there are three different coke species including chemisorbed carbon,amorphous carbon and filamentous coke in the solid deposits.More than 90%of coke deposits are carried away by the supercritical fluid,which has strong capabilities of extraction for coke deposits and their pre-cursors.There were 17.1 wt-%of iron and 11.1 wt-%of chromium found on the coke surface detected by energy dispersive spectroscopy(EDS)which suggests carbure-tion on alloy.RP-3 fuel and its cracking liquids were analyzed by GC-MS,which showed that the content of alkyl benzene and alkyl naphthalene increased evidently in cracking liquids.展开更多
基金supported by the National Natural Science Foundation of China (10672169, 10621202)
文摘Supersonic model combustors using two-stage injections of supercritical kerosene were experimentally investigated in both Mach 2.5 and 3.0 model combustors with stagnation temperatures of approximately 1,750 K. Supercritical kerosene of approximately 760 K was prepared and injected in the overall equivalence ratio range of 0.5-1.46. Two pairs of integrated injector/flameholder cavity modules in tandem were used to facilitate fuel-air mixing and stable combustion. For single-stage fuel injection at an upstream location, it was found that the boundary layer separation could propagate into the isolator with increasing fuel equivalence ratio due to excessive local heat release, which in turns changed the entry airflow conditions. Moving the fuel injection to a further downstream location could alleviate the problem, while it would result in a decrease in combustion efficiency due to shorter fuel residence time. With two-stage fuel injections the overall combustor performance was shown to be improved and kerosene injections at fuel rich conditions could be reached without the upstream propagation of the boundary layer separation into the isolator. Furthermore, effects of the entry Mach number and pilot hydrogen on combustion performance were also studied.
基金support from the National Natural Science Foundation of China(No.51576027)。
文摘The convective heat transfer of supercritical-pressure RP-3(Rocket Propellant 3)aviation kerosene in a horizontal circular tube has been numerically studied,focusing mainly on the non-uniform heat transfer deterioration along the circumferential direction.The governing equations of mass,momentum and energy have been solved using the pressure-based segregated solver based on the finite volume method.The re-normalization group(RNG)k-εturbulence model with an enhanced wall treatment was selected.Considering the heat conduction in the solid wall,the mechanism of heat transfer deterioration and the buoyancy effect on deteriorated heat transfer were discussed.The evolution of secondary flow was analyzed.Effects of the outer-wall heat flux,mass flux,pressure and tube thermal conductivity on heat transfer were investigated.Moreover,the buoyancy criterion and the heat transfer correlation were obtained.Results indicate that the poor flow performance of near-wall fluid causes the pseudo-film boiling,further leads to the heat transfer deterioration.The strong buoyancy has an effect of enhancing the heat transfer at the bottom of tube,and weakening the heat transfer at the top of tube,which results in the non-uniform inner-wall temperature and heat flux distributions.Decreasing the ratio of outer-wall heat flux and mass flux,increasing the pressure could weaken the heat transfer difference along the circumferential direction,while the effect of thermal conductivity of tube on the circumferential parameters distributions is more complicated.When the buoyancy criterion of(Grq/Grth)max≤0.8 is satisfied,the effect of buoyancy could be ignored.The new correlations work well for non-uniform heat transfer predictions.
基金Supported by the National Science Foundation of Zhejiang Province(Z13E060001)the National Natural Science Foundation of China(52176091)+1 种基金the National Science Foundation of Shandong Province(ZR2012EEQ017)the PhD Program Foundation of Ministry of Education of China(20120101110102)
文摘A research on the heat transfer performance of kerosene flowing in a vertical upward tube at supercritical pressure is presented.In the experiments,insights are offered on the effects of the factors such as mass flux,heat flux,and pressure.It is found that increasing mass flux reduces the wall temperature and separates the experimental section into three different parts,while increasing working pressure deteriorates heat transfer.The extended corresponding-state principle can be used for evaluating density and transport properties of kerosene,including its viscosity and thermal conductivity,at different temperatures and pressures under supercritical conditions.For getting the heat capacity,a Soave–Redlich–Kwong(SRK)equation of state is used.The correlation for predicting heat transfer of kerosene at supercritical pressure is established and shows good agreement with the experimental data.
基金supported by the National Natural Science Foundation of China(Nos.51271171 and 11775150)
文摘The effect of dissolved oxygen(DO) on the stress corrosion cracking(SCC) of 310 S in supercritical water was investigated using slow-strain-rate tensile tests.The tensile properties, fracture morphology, and distribution of the chemical composition of the oxide were analyzed to evaluate the SCC susceptibility of 310 S. The results showed that the rupture elongation decreased significantly as the degree of DO increased. A brittle fracture mode was observed on the fracture surface, and only intergranular cracking was observed on the surface of the gauge section, regardless of the DO. Cracks were widely distributed on the gauge surface near the fracture surface.Oxides were observed in the cracks with two-layered structures, i.e., a Cr-rich inner oxide layer and an Fe-rich outer oxide layer.
基金supported by the National Natural Science Foundation of China (10672169 and 10902115)
文摘In this paper, compressible flow of aviation kerosene at supercritical conditions has been studied both numerically and experimentally. The thermophysical properties of supercritical kerosene are calculated using a 10- species surrogate based on the principle of extended corresponding states (ECS). Isentropic acceleration of supercritical kerosene to subsonic and supersonic speeds has been analyzed numerically. It has been found that the isentropic relationships of supercritical kerosene are significantly dif- ferent from those of ideal gases, A two-stage fuel heating and delivery system is used to heat the kerosene up to a tem- perature of 820 K and pressure of 5.5 MPa with a maximum mass flow rate of 100 g/s. The characteristics of supercritical kerosene flows in a converging-diverging nozzle (Laval nozzle) have been studied experimentally. The results show that stable supersonic flows of kerosene could be established in the temperature range of 730 K-820 K and the measurements in the wall pressure agree with the numerical calculation.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.91941301,91941105,52025064,51790511).
文摘In view of the difficulty of kerosene-air detonation faced by the application of rotating detonation to aviation engines,in order to improve the kerosene detonation activity,the atmospheric pressure gliding arc plasma is used to conduct secondary adjustment of the pre-combustion cracking products.The results show that the components with larger molecular weight in the pre-combustion cracking products,such as ethylene and methane,can be cracked into highly active species of hydrogen and acetylene by gliding arc plasma.With the increase of the fuel ratio of pre-combustion cracking,the plasma has a more significant effect on the adjustment of high active components.However,as the flow rate of the cracking gas treated by plasma increases,the adjustment effect is obviously reduced.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 10672169 and 10742003)
文摘Thermal cracking of China No.3 aviation kerosene was studied experimentally and analytically under supercritical conditions relevant to regenerative cooling system for Mach-6 scramjet applications. A two-stage heated tube system with cracked products collection/analysis was used and it can achieve a fuel temperature range of 700―1100 K,a pressure range of 3.5―4.5 MPa and a residence time of ap-proximately 0.5―1.3 s. Compositions of the cracked gaseous products and mass flow rate of the kerosene flow at varied temperatures and pressures were obtained experimentally. A one-step lumped model was developed with the cracked mixtures grouped into three categories:unreacted kerosene,gaseous products and residuals including liquid products and carbon deposits. Based on the model,fuel conversion on the mass basis,the reaction rate and the residence time were estimated as functions of temperature. Meanwhile,a sonic nozzle was used for the control of the mass flow rate of the cracked kerosene,and correlation of the mass flow rate gives a good agreement with the measurements.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10921062,10902115 and 11172309)
文摘In this paper,characteristics of flow and convective heat transfer of China RP-3 kerosene in straight circular pipe were numerically studied.Navier-Stokes equations were solved using RNG k-turbulence model with low Reynolds number correction.The thermophysical and transport properties of the China RP-3 kerosene were calculated with a 10-species surrogate and the extended corresponding state method(ECS) combined with Benedict-Webb-Rubin equation.The independence of grids was first studied and the numerical results were then compared with experimental data for validation.Under flow conditions given in the paper,the results show that deterioration of convective heat transfer occurs when the wall temperature is slightly higher than the pseudo-critical temperature of kerosene for cases with wall heat flux of 1.2 and 0.8 MW/m 2.The degree of the heat transfer deterioration is weakened as the heat flux decreases.The deterioration,however,does not happen when the heat flux on the pipe wall is reduced to 0.5 MW/m 2.Based on the analysis of the near-wall turbulent properties,it is found that the heat transfer deterioration and then the enhancement are attributed partly to the change in the turbulent kinetic energy in the vicinity of pipe wall.The conventional heat transfer relations such as Sieder-Tate and Gnielinski formulas can be used for the estimation of kerosene heat convection under subcritical conditions,but they are not capable of predicting the phenomenon of heat transfer deterioration.The modified Bae-Kim formula can describe the heat transfer deterioration.In addition,the frictional drag would increase dramatically when the fuel transforms to the supercritical state.
文摘Continuous-flow reactor experiments were carried out to study coke formation from thermal crack-ing of home-made jet fuel RP-3 under supercritical con-ditions.The mechanism and precursor of coke forming were analyzed.The starting cracking temperature of RP-3 fuel was determined to be 471.8uC by differential scan-ning calorimetry(DSC).Temperature-programmed oxidation and scanning electron microscopy(SEM)characterizations of the stressed tubes showed that there are three different coke species including chemisorbed carbon,amorphous carbon and filamentous coke in the solid deposits.More than 90%of coke deposits are carried away by the supercritical fluid,which has strong capabilities of extraction for coke deposits and their pre-cursors.There were 17.1 wt-%of iron and 11.1 wt-%of chromium found on the coke surface detected by energy dispersive spectroscopy(EDS)which suggests carbure-tion on alloy.RP-3 fuel and its cracking liquids were analyzed by GC-MS,which showed that the content of alkyl benzene and alkyl naphthalene increased evidently in cracking liquids.