The conventional linear quadratic regulator(LQR) control algorithm is one of the most popular active control algorithms.One important issue for LQR control algorithm is the reduction of structure's degrees of free...The conventional linear quadratic regulator(LQR) control algorithm is one of the most popular active control algorithms.One important issue for LQR control algorithm is the reduction of structure's degrees of freedom(DOF). In this work, an LQR control algorithm with superelement model is intended to solve this issue leading to the fact that LQR control algorithm can be used in large finite element(FE) model for structure. In proposed model, the Craig-Bampton(C-B) method, which is one of the component mode syntheses(CMS), is used to establish superelement modeling to reduce structure's DOF and applied to LQR control algorithm to calculate Kalman gain matrix and obtain control forces. And then, the control forces are applied to original structure to simulate the responses of structure by vibration control. And some examples are given. The results show the computational efficiency of proposed model using synthesized models is higher than that of the classical method of LQR control when the DOF of structure is large. And the accuracy of proposed model is well. Meanwhile, the results show that the proposed control has more effects of vibration absorption on the ground structures than underground structures.展开更多
We present the СATEС software, which implements the solution to the problems of computational acoustics. The software is based on the use of the superelement method and finite element modeling algorithms, in-cluding...We present the СATEС software, which implements the solution to the problems of computational acoustics. The software is based on the use of the superelement method and finite element modeling algorithms, in-cluding hydrodynamic noise. The paper presents the main possibilities of software for solving acoustic design problems. .展开更多
Some numerical models such as central atoms model (CAM) and superelement model were used to simulate the thermodynamics of austenite decomposition in the Fe-C-Mn-Si TRIP (transformation induced plasticity) steels....Some numerical models such as central atoms model (CAM) and superelement model were used to simulate the thermodynamics of austenite decomposition in the Fe-C-Mn-Si TRIP (transformation induced plasticity) steels. Thermodynamic calculations were carried out under a para-equilibrium (PE) condition. The results show that certain silicon content can accelerate the polygonal ferritic transformation and increase the volume fraction and stability of retained austenite by retarding the precipitation of carbides during the bainitic transformation.展开更多
In this paper, a new mathematical form, matrix, continued fraction (MCF) is introduced to describe the decay of effects of an equilibrant system of forces acting on a sphere of an elastic body. By this way, the famous...In this paper, a new mathematical form, matrix, continued fraction (MCF) is introduced to describe the decay of effects of an equilibrant system of forces acting on a sphere of an elastic body. By this way, the famous Saint-Venant's principle is proved often but not always valid in computational mechanics.展开更多
基金Project(LZ2015022)supported by Educational Commission of Liaoning Province of ChinaProjects(51138001,51178081)supported by the National Natural Science Foundation of China+1 种基金Project(2013CB035905)supported by the Basic Research Program of ChinaProjects(DUT15LK34,DUT14QY10)supported by Fundamental Research Funds for the Central Universities,China
文摘The conventional linear quadratic regulator(LQR) control algorithm is one of the most popular active control algorithms.One important issue for LQR control algorithm is the reduction of structure's degrees of freedom(DOF). In this work, an LQR control algorithm with superelement model is intended to solve this issue leading to the fact that LQR control algorithm can be used in large finite element(FE) model for structure. In proposed model, the Craig-Bampton(C-B) method, which is one of the component mode syntheses(CMS), is used to establish superelement modeling to reduce structure's DOF and applied to LQR control algorithm to calculate Kalman gain matrix and obtain control forces. And then, the control forces are applied to original structure to simulate the responses of structure by vibration control. And some examples are given. The results show the computational efficiency of proposed model using synthesized models is higher than that of the classical method of LQR control when the DOF of structure is large. And the accuracy of proposed model is well. Meanwhile, the results show that the proposed control has more effects of vibration absorption on the ground structures than underground structures.
文摘We present the СATEС software, which implements the solution to the problems of computational acoustics. The software is based on the use of the superelement method and finite element modeling algorithms, in-cluding hydrodynamic noise. The paper presents the main possibilities of software for solving acoustic design problems. .
基金Item Sponsored by National Natural Science Foundation of China (50334010)
文摘Some numerical models such as central atoms model (CAM) and superelement model were used to simulate the thermodynamics of austenite decomposition in the Fe-C-Mn-Si TRIP (transformation induced plasticity) steels. Thermodynamic calculations were carried out under a para-equilibrium (PE) condition. The results show that certain silicon content can accelerate the polygonal ferritic transformation and increase the volume fraction and stability of retained austenite by retarding the precipitation of carbides during the bainitic transformation.
文摘In this paper, a new mathematical form, matrix, continued fraction (MCF) is introduced to describe the decay of effects of an equilibrant system of forces acting on a sphere of an elastic body. By this way, the famous Saint-Venant's principle is proved often but not always valid in computational mechanics.