期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
Kerosene-fueled supersonic combustion modeling based on skeletal mechanisms 被引量:2
1
作者 Wei Yao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2019年第6期1155-1177,共23页
A brief review of the recent advances in kerosene-fueled supersonic combustion modeling is present by comparing the fuels,reviewing the kinetic mechanisms,and introducing recent modeling results.The advantages and dis... A brief review of the recent advances in kerosene-fueled supersonic combustion modeling is present by comparing the fuels,reviewing the kinetic mechanisms,and introducing recent modeling results.The advantages and disadvantages of hydrogen and kerosene for the scramjet combustor are compared to show that kerosene is a more viable fuel option for a Mach number range of 4-8.However,detailed kinetic mechanisms for kerosene,which usually contain thousands of elementary reactions,must be significantly reduced for use in modeling.As of this writing,the smallest skeletal kerosene mechanism has only 19 species and 53 reversible reactions.In contrast to pioneer models based on global chemistry,the current kerosene-fueled supersonic combustion models based on reduced/skeletal chemistry are classified as second-stage.The influence of kinetic mechanisms,global equivalence ratios,inlet Mach number,geometric shape,and domain symmetry are reviewed based on high-fidelity models and available measurements.With the advances in computational technology,models with accurate descriptions of both flow and chemistry are becoming a promising,indispensable approach for the study of supersonic combustion. 展开更多
关键词 KEROSENE supersonic combustion Large eddy simulation Skeletal mechanism SCRAMJET
下载PDF
Numerical Investigations on the Impact of Turbulent Prandtl Number and Schmidt Number on Supersonic Combustion 被引量:2
2
作者 Yongkang Zheng Chao Yan 《Fluid Dynamics & Materials Processing》 EI 2020年第3期637-650,共14页
The flow field inside the combustor of a scramjet is highly complicated and the related turbulent Prandtl and Schmidt numbers have a significant impact on the effective numerical prediction of such dynamics.As in many... The flow field inside the combustor of a scramjet is highly complicated and the related turbulent Prandtl and Schmidt numbers have a significant impact on the effective numerical prediction of such dynamics.As in many cases researchers set these parameters on the basis of purely empirical laws,assessing their impact(via parametric numerical simulations)is a subject of great importance.In the present work,in particular,two test cases with different characteristics are selected for further evaluation of the role played by these non-dimensional numbers:Burrows-Kurkov case and DLR case.The numerical results indicate that these parameters influence ignition location.Moreover,the temperature distribution is more sensitive to them than to H2O mass fraction and velocity distributions. 展开更多
关键词 Turbulent Prandtl number turbulent Schmidt number ignition position supersonic combustion
下载PDF
A Numerical Study on Supersonic Combustion Optimization Based on the Streamwise Vortex-Couple Method
3
作者 Hao Tian Yongkang Zheng Hanxin Zhang 《Fluid Dynamics & Materials Processing》 EI 2023年第1期207-222,共16页
In this paper,some typical methods to promote mixing in supersonic combustion are reviewed,and the fluid-dynamic mechanism underpinning the development of the supersonic shear layer in the presence of a streamwise vor... In this paper,some typical methods to promote mixing in supersonic combustion are reviewed,and the fluid-dynamic mechanism underpinning the development of the supersonic shear layer in the presence of a streamwise vortex is analyzed through computational fluid dynamics.It is proven that the streamwise vortex-couple method is an excellent approach to enhance mixing.A specific combustor design is proposed accordingly. 展开更多
关键词 supersonic combustion streamwise vortex numerical simulation
下载PDF
Combustion characteristics of supersonic strut-cavity combustor under plasma jet-assisted combustion 被引量:1
4
作者 ZHANG Zhe JIN Xing XI Wen-xiong 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第1期311-324,共14页
Plasma jet has been widely used in supersonic combustor as an effective ignition and combustion assisted method,but currently it is mostly combined with the traditional wall fuel injection method,while the application... Plasma jet has been widely used in supersonic combustor as an effective ignition and combustion assisted method,but currently it is mostly combined with the traditional wall fuel injection method,while the application combined with the central fuel injection method is less.In order to expand the combustion range,the plasma jet was introduced into a strut-cavity combustor with an alternating-wedge.The effects of total pressure of strut fuel injection,total pressure of cavity fuel injection,total pressure of plasma jet injection and plasma jet media on the combustion characteristics were analyzed in supersonic flow by numerical calculations in a three-dimensional domain.The combustion field structure,wall pressure distribution,combustion efficiency and distribution of H2O at the exit of the combustor with different injection conditions were analyzed.The results show that the combustion efficiency decreases with the increase of the strut fuel injection total pressure.However,the combustion area downstream increases when the total pressure of the strut fuel injection increases within the proper range.The combustion range is expanded and the combustion efficiency is improved when the cavity fuel injection total pressure is increased within the range of 0.5−2.0 MPa,but a sharp drop in combustion efficiency can be found due to limited fuel mixing when the total injection pressure of the cavity fuel is excessively increased.With the increased total injection pressure of the plasma jet,the height of the cavity shear layer is raised and the equivalence ratio of the gas mixture in the cavity is improved.When the total pressure of the plasma jet is 1.25 MPa,the combustion efficiency reaches a maximum of 82.1%.The combustion-assisted effect of different plasma jet media is significantly different.When the medium of the plasma jet is O2,the combustion-assisted effect on the combustor is most significant. 展开更多
关键词 plasma jet STRUT CAVITY supersonic combustion numerical simulation combustion efficiency
下载PDF
Numerical Application of the Flamelet Model to Supersonic Turbulent Combustion
5
作者 Yongkang Zheng Qinxue Jiang +2 位作者 Hao Tian Youda Ye Jingying Wang 《Fluid Dynamics & Materials Processing》 EI 2022年第4期957-971,共15页
In this study,the flow field structure inside a scramjet combustor is numerically simulated using the flamelet/progress variable model.Slope injection is considered,with fuel mixing enhanced by means of a streamwise v... In this study,the flow field structure inside a scramjet combustor is numerically simulated using the flamelet/progress variable model.Slope injection is considered,with fuel mixing enhanced by means of a streamwise vortex.The flow field structure and combustion characteristics are analyzed under different conditions.Attention is also paid to the identification of the mechanisms that keep combustion stable and support enhanced mixing.The overall performances of the combustion chamber are discussed. 展开更多
关键词 Steady flamelet model flamelet/progress variable model supersonic combustion
下载PDF
PARALLELIZED UPWIND FLUX SPLITTING SCHEME FOR SUPERSONIC REACTING FLOWS ON UNSTRUCTURED HYBRID MESHES
6
作者 王江峰 伍贻兆 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2007年第3期218-224,共7页
A parallelized upwind flux splitting scheme for supersonic reacting flows on hybrid meshes is presented. The complexity of super/hyper-sonic combustion flows makes it necessary to establish solvers with higher resolut... A parallelized upwind flux splitting scheme for supersonic reacting flows on hybrid meshes is presented. The complexity of super/hyper-sonic combustion flows makes it necessary to establish solvers with higher resolution and efficiency for multi-component Euler/N-S equations. Hence, a spatial second-order van Leer type flux vector splitting scheme is established by introducing auxiliary points in interpolation, and a domain decomposition method used on unstructured hybrid meshes for obtaining high calculating efficiency. The numerical scheme with five-stage Runge-Kutta time step method is implemented to the simulation of combustion flows, including the supersonic hydrogen/air combustion and the normal injection of hydrogen into reacting flows. Satisfying results are obtained compared with limited references. 展开更多
关键词 supersonic combustion chemical reaction upwind scheme PARALLELIZATION
下载PDF
Performance of supersonic model combustors with staged injections of supercritical aviation kerosene 被引量:4
7
作者 Feng-Quan Zhong Xue-Jun Fan +2 位作者 Gong Yu Jian-Guo Li Chih-Jen Sung 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第5期661-668,共8页
Supersonic model combustors using two-stage injections of supercritical kerosene were experimentally investigated in both Mach 2.5 and 3.0 model combustors with stagnation temperatures of approximately 1,750 K. Superc... Supersonic model combustors using two-stage injections of supercritical kerosene were experimentally investigated in both Mach 2.5 and 3.0 model combustors with stagnation temperatures of approximately 1,750 K. Supercritical kerosene of approximately 760 K was prepared and injected in the overall equivalence ratio range of 0.5-1.46. Two pairs of integrated injector/flameholder cavity modules in tandem were used to facilitate fuel-air mixing and stable combustion. For single-stage fuel injection at an upstream location, it was found that the boundary layer separation could propagate into the isolator with increasing fuel equivalence ratio due to excessive local heat release, which in turns changed the entry airflow conditions. Moving the fuel injection to a further downstream location could alleviate the problem, while it would result in a decrease in combustion efficiency due to shorter fuel residence time. With two-stage fuel injections the overall combustor performance was shown to be improved and kerosene injections at fuel rich conditions could be reached without the upstream propagation of the boundary layer separation into the isolator. Furthermore, effects of the entry Mach number and pilot hydrogen on combustion performance were also studied. 展开更多
关键词 supersonic combustion Staged injection combustion efficiency Supercritical kerosene
下载PDF
Experimental investigation of combustion mechanisms of kerosene-fueled scramjet engines with double-cavity flameholders 被引量:4
8
作者 Yu Pan Jian-Guo Tan Jian-Han Liang Wei-Dong Liu Zhen-Guo Wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第6期891-897,共7页
A scramjet combustor with double cavitybased flameholders was experimentally studied in a directconnected test bed with the inflow conditions of M = 2.64,Pt = 1.84 MPa,Tt = 1 300 K.Successful ignition and selfsustaine... A scramjet combustor with double cavitybased flameholders was experimentally studied in a directconnected test bed with the inflow conditions of M = 2.64,Pt = 1.84 MPa,Tt = 1 300 K.Successful ignition and selfsustained combustion with room temperature kerosene was achieved using pilot hydrogen,and kerosene was vertically injected into the combustor through 4×φ 0.5 mm holes mounted on the wall.For different equivalence ratios and different injection schemes with both tandem cavities and parallel cavities,flow fields were obtained and compared using a high speed camera and a Schlieren system.Results revealed that the combustor inside the flow field was greatly influenced by the cavity installation scheme,cavities in tandem easily to form a single side flame distribution,and cavities in parallel are more likely to form a joint flame,forming a choked combustion mode.The supersonic combustion flame was a kind of diffusion flame and there were two kinds of combustion modes.In the unchoked combustion mode,both subsonic and supersonic combustion regions existed.While in the choked mode,the combustion region was fully subsonic with strong shock propagating upstream.Results also showed that there was a balance point between the boundary separation and shock enhanced combustion,depending on the intensity of heat release. 展开更多
关键词 Scramjet. supersonic combustion. Flame structure Cavity flameholder
下载PDF
NUMERICAL STUDIES ON THE MIXING OF CH_4 AND KEROSENE INJECTED INTO A SUPERSONIC FLOW WITH H_2 PILOT INJECTION 被引量:1
9
作者 徐胜利 岳朋涛 韩肇元 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第4期468-477,共10页
Two-fluid model and divisional computation techniques were used. The multispecies gas fully N-S equations were solved by upwind TVD scheme. Liquid phase equations were solved by NND scheme. The phases-interaction ODE ... Two-fluid model and divisional computation techniques were used. The multispecies gas fully N-S equations were solved by upwind TVD scheme. Liquid phase equations were solved by NND scheme. The phases-interaction ODE equations were solved by 2nd Runge-Kutta approach. The favorable agreement is obtained between computational results and PLIF experimental results of iodized air injected into a supersonic flow. Then, the numerical studies,were carried out on the mixing of CH, and kerosene injected into a supersonic flow with H-2 pilot injection. The results indicate that the penetration of kerosene approaches maximum when it is injected from the second injector. But the kerosene is less diffused compared with the gas fuels. The free droplet region appears in the flow field. The mixing mechanism of CH4 with H-2 pilot injection is different from that of kerosene. In the staged duct, H-2 can be entrained into both recirculation zones produced by the step mid injectors. But CH, can only be carried into the recirculation between the injectors. Therefore, initiations of H, and CH4 carl occur in those regions. The staged duct is better in enhancing mixing and initiation with H-2 pilot flame. 展开更多
关键词 hydrocarbon fuels supersonic flow supersonic combustion numerical stimulation
下载PDF
Characteristics of a coherent jet enshrouded in a supersonic fuel gas
10
作者 Fei Zhao Rong Zhu Wen-rui Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第2期173-180,共8页
Based on a current coherent jet,this study proposes a supersonic combustion(SC)coherent jet in which the main oxygen jet is surrounded by a supersonic fuel gas.The characteristics of the proposed coherent jet are anal... Based on a current coherent jet,this study proposes a supersonic combustion(SC)coherent jet in which the main oxygen jet is surrounded by a supersonic fuel gas.The characteristics of the proposed coherent jet are analyzed using experimental methods and numerical simulations in the high-temperature environment of electric arc furnace(EAF)steelmaking.The SC coherent jet achieved stable combustion in the EAF steelmaking environment.The simulated combustion temperature of the supersonic shrouding methane gas was 2930 K,slightly below the theoretical combustion temperature of methane–oxygen gas.The high speed and temperature of the supersonic flame effectively weakened the interaction between the main oxygen jet and the external ambient gas,inhibiting the radial expansion of the main oxygen jet and maintaining its high speed and low turbulence over a long distance.These features improved the impact capacity of the coherent jet and strengthened the stirring intensity in the EAF bath. 展开更多
关键词 EAF steelmaking coherent jet supersonic shrouding fuel gas supersonic combustion field characteristics
下载PDF
Experimental investigation for temperature and emissivity by flame emission spectrum in a cavity of rocket based combined cycle combustor chamber
11
作者 Weiguang Cai Shu Zheng +4 位作者 Yan Wang Bing Liu Shaohua Zhu Li Zhao Qiang Lu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期114-122,共9页
Flame temperature and spectral emissivity were the important parameters characterizing the sufficient degree of fuel combustion and the particle radiative characteristics in the Rocket Based Combined Cycle(RBCC)combus... Flame temperature and spectral emissivity were the important parameters characterizing the sufficient degree of fuel combustion and the particle radiative characteristics in the Rocket Based Combined Cycle(RBCC)combustor.To investigate the combustion characteristics of the complex supersonic flame in the RBCC combustor,a new radiation thermometry combined with Levenberg-Marquardt(LM)algorithm and the least squares method was proposed to measure the temperature,emissivity and spectral radiative properties based on the flame emission spectrum.In-situ measurements of the flame temperature,emissivity and spectral radiative properties were carried out in the RBCC direct-connected test bench with laser-induced plasma combustion enhancement(LIPCE)and without LIPCE.The flame average temperatures at fuel global equivalence ratio(a)of 1.0b and 0.6 with LIPCE were 4.51%and 2.08%higher than those without LIPCE.The flame combustion oscillation of kerosene tended to be stable in the recirculation zone of cavity with the thermal and chemical effects of laser induced plasma.The differences of flame temperature at a=1.0b and 0.6 were 503 K and 523 K with LIPCE,which were 20.07%and42.64%lower than those without LIPCE.The flame emissivity with methane assisted ignition was 80.46%lower than that without methane assisted ignition,due to the carbon-hydrogen ratio of kerosene was higher than that of methane.The spectral emissivities at 600 nm with LIPCE were 1.25%,22.2%,and 4.22%lower than those without LIPCE at a=1.0a(with methane assisted ignition),1.0b(without methane assisted ignition)and 0.6.The effect of concentration in the emissivity was removed by normalization to analyze the flame radiative properties in the RBCC combustor chamber.The maximum differences of flame normalized emissivity were 50.91%without LIPCE and 27.53%with LIPCE.The flame radiative properties were stabilized under the thermal and chemical effects of laser induced plasma at a=0.6. 展开更多
关键词 Rocket-based combined-cycle supersonic combustion Flame temperature measurement EMISSIVITY Laser induced plasma combustion enhancement
下载PDF
Theoretical analysis of flamelet model for supersonic turbulent combustion 被引量:8
12
作者 FAN ZhouQin LIU WeuDong +3 位作者 SUN MingBo WANG ZhenGuo ZHUANG FengChen LUO WenLei 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第1期193-205,共13页
Being physically intuitionistic and computationally efficient, the flamelet model has obtained increasing attention and becomes popular in numerical simulations of supersonic combustion. However, the flamelet model wa... Being physically intuitionistic and computationally efficient, the flamelet model has obtained increasing attention and becomes popular in numerical simulations of supersonic combustion. However, the flamelet model was firstly built for simulations of the low-speed flows. Therefore it is still unclear whether the assumption of the fiamelet model is reasonable in supersonic combustion. This paper tries to identify the existence of the flamelet mode in supersonic combustion. Firstly, the interaction of the turbulent fluctuation and the flame is discussed, based on which the combustion regime is distinguished. Then the charac- teristic length scale of the turbulent flows and the combustion inside the scramjet combustor are calculated and compared, which are used to identify whether the assumption of the flamelet model is reasonable in supersonic flows. The results show that for premixed combustion, due to the low fluctuation velocity in the recirculafion zone and the shear layer, the assumption of the flamelet model is established for all the flight Mach numbers, while for non-premixed combustion the assumption is also established for most of the flight Mach numbers except for very high Mach number under which the slow reaction mode dominates the combustion. In order to quantitatively examine the combustion mode, numerical calculations are performed to simulate the strut-injection supersonic combustion which has been experimentally investigated in German Aerospace Center. The results show that the supersonic combustion occurs in the fully-developed turbulent regions and the assumption of the flamelet model is established in the whole flow field. 展开更多
关键词 flamelet model characteristic scale supersonic turbulent combustion thin-reaction-zone mode
原文传递
Experimental and Numerical Studies of Vitiated Air Effects on Hydrogen-fueled Supersonic Combustor Performance 被引量:6
13
作者 LUO Feiteng SONG Wenyan +2 位作者 ZHANG Zhiqiang LI Weiqiang LI Jianping 《Chinese Journal of Aeronautics》 SCIE EI CSCD 2012年第2期164-172,共9页
This paper deals with the vitiation effects of test air on the scramjet performance in the ground combustion heated facilities. The primary goal is to evaluate the effects of H2O and CO2, the two major vitiated specie... This paper deals with the vitiation effects of test air on the scramjet performance in the ground combustion heated facilities. The primary goal is to evaluate the effects of H2O and CO2, the two major vitiated species generated by combustion heater, on hydrogen-fueled supersonic combustor performance with experimental and numerical approaches. The comparative experiments in the clean air and vitiated air are conducted by using the resistance heated direct-connected facility, with the typical Mach 4 flight conditions simulated. The H2O and CO2 species with accurately controlled contents are added to the high enthalpy clean air from resistance heater, to synthesize the vitiated air of a combustion-type heater. Typically, the contents of H2O species can be varied within the range of 3.5%-30% by mole, and 3.0%-10% for CO2 species. The total temperature, total pressure, Mach number and O2 mole fraction at the combustor entrance are well-matched between the clean air and vitiated air. The combustion experiments are completed at the fuel equivalence ratios of 0.53 and 0.42 respectively. Furthermore, three-dimensional (3D) reacting flow simulations of combustor flowpath are performed to provide insight into flow field structures and combustion chemistry details that cannot resolved by experimental instruments available. Finally, the experimental data, combined with computational results, are employed to analyze the effects of H2O and CO2 vitiated air on supersonic combustion characteristics and performance. It is concluded that H2O and CO2 contaminants can significantly inhibit the combustion induced pressure rise measured from combustor wall, and the pressure profile decreases with the increasing H2O and CO2 contents in nonlinear trend; simulation results agree well with experimental data and the overall vitiation effects are captured; direct extrapolation of the results from vitiated air to predict the performance of actual flight conditions could result in over-fueling the combustor, possible inlet un-start and inappropriate combustion mode transition. The detailed analysis and discussion are presented and the research conclusions are summarized. 展开更多
关键词 SCRAMJET HYDROGEN supersonic combustion vitiation effects experimental investigation numerical simulation
原文传递
Numerical study of test gas vitiation effects on hydrogen-fueled scramjet combustion 被引量:1
14
作者 CHEN Chao-qun TIAN Liang XU Xu 《航空动力学报》 EI CAS CSCD 北大核心 2012年第2期326-334,共9页
The effects of major vitiated species(H2O and CO2) and minor vitiated species(H,OH and O radicals) produced by combustion air preheater on ignition and combustion of hydrogen-fueled scramjet were numerically investiga... The effects of major vitiated species(H2O and CO2) and minor vitiated species(H,OH and O radicals) produced by combustion air preheater on ignition and combustion of hydrogen-fueled scramjet were numerically investigated.Firstly,kinetic analyses with CHEMKIN SENKIN code were conducted to evaluate the effects of contamination on the ignition delay times of hydrogen fuel over a range of temperature and pressure variations.Then numerical simulation of a three-dimensional reacting flow in hydrogen-fueled scramjet combustor was performed.The two-equation shear stress transport κ-ω turbulence model was used for modeling turbulence and 33 reactions finite-rate chemistry was used for modeling the H2/air kinetics.The results show that: free radical species such as H,O,and OH may significantly promote the ignition process of hydrogen-air at relatively low initial temperature and pressure.However,H2O and CO2 have inhibition effects on the ignition process.Under the same conditions,H2O has more effective inhibition effects than CO2.The temperature and pressure rise due to combustion are lower in the air vitiated with H2O and CO2 because of their higher heat capacities and more dissociation.Combustion efficiency and thrust calculated for vitiated air case are lower than clean air case.These results indicate the importance of accounting for vitiation effects when extrapolating performance data from ground test to flight demonstration. 展开更多
关键词 SCRAMJET CONTAMINANT IGNITION supersonic combustion PREHEATER
原文传递
Effect of methane-hydrogen mixtures on flow and combustion of coherent jets 被引量:2
15
作者 Ting Cheng Rong Zhu Kai Dong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第11期1143-1151,共9页
Coherent jets are widely used in electric are furnace (EAF) steelmaking to increase the oxygen utilization and chemical reaction rates. However, the influence of fuel gas combustion on jet behavior is not fully unde... Coherent jets are widely used in electric are furnace (EAF) steelmaking to increase the oxygen utilization and chemical reaction rates. However, the influence of fuel gas combustion on jet behavior is not fully understood yet. The flow and combustion characteristics of a coherent jet were thus investigated at steelmaking temperature using Fluent software, and a detailed chemical kinetic reaction mecha- nism was used in the combustion reaction model. The axial velocity and total temperature of the supersonic jet were measured via hot state experiments. The simulation results were compared with the experimental data and the empirical jet model proposed by Ito and Muchi and good consistency was obtained. The research results indicated that the potential core length of the coherent jet can be prolonged by optimizing the combustion effect of the fuel gas. Besides, the behavior of the supersonic jet in the subsonic section was also investigated, as it is an important factor for controlling the position of the oxygen lance. The investigation indicated that the attenuation of the coherent jet is more notable than that of the conventional jet in the subsonic section. 展开更多
关键词 supersonic jet Numerical simulation Mixed fuel gas Flow field combustion characteristic
原文传递
Criteria for hypersonic airbreathing propulsion and its experimental verification 被引量:15
16
作者 Zonglin JIANG Zijian ZHANG +2 位作者 Yunfeng LIU Chun WANG Changtong LUO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第3期94-104,共11页
Hypersonic airbreathing propulsion is one of the top techniques for future aerospace flight, but there are still no practical engines after seventy years’ development. Two critical issues are identified to be the bar... Hypersonic airbreathing propulsion is one of the top techniques for future aerospace flight, but there are still no practical engines after seventy years’ development. Two critical issues are identified to be the barriers for the ramjet-based engine that has been taken as the most potential concept of the hypersonic propulsion for decades. One issue is the upstream-traveling shock wave that develops from spontaneous waves resulting from continuous heat releases in combustors and can induce unsteady combustion that may lead to engine surging during scramjet engine operation.The other is the scramjet combustion mode that cannot satisfy thrust needs of hypersonic vehicles since its thermos-efficiency decreases as the flight Mach number increases. The two criteria are proposed for the ramjet-based hypersonic propulsion to identify combustion modes and avoid thermal choking. A standing oblique detonation ramjet(Sodramjet) engine concept is proposed based on the criteria by replacing diffusive combustion with an oblique detonation that is a unique pressure-gain phenomenon in nature. The Sodramjet engine model is developed with several flow control techniques, and tested successfully with the hypersonic flight-duplicated shock tunnel.The experimental data show that the Sodramjet engine model works steadily, and an oblique detonation can be made stationary in the engine combustor and is controllable. This research demonstrates the Sodramjet engine is a promising concept and can be operated stably with high thermal efficiency at hypersonic flow conditions. 展开更多
关键词 Concept demonstration Hypersonic propulsion Oblique detonation engine SCRAMJET Shock wave supersonic combustion Wind tunnel test
原文传递
Research progress on solid-fueled Scramjet 被引量:5
17
作者 Xiang ZHAO Zhixun XIA +4 位作者 Likun MA Chaolong LI Chuanbo FANG Benveniste NATAN Alon GANY 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第1期398-415,共18页
The solid-fueled Scramjet is an interesting option for supersonic combustion ramjet.It shows significant advantages such as simple fuel supply and compactness,avoiding the complex system of tanks and pipelines that en... The solid-fueled Scramjet is an interesting option for supersonic combustion ramjet.It shows significant advantages such as simple fuel supply and compactness,avoiding the complex system of tanks and pipelines that encountered in liquid-fueled Scramjets.The solid-fueled Scramjet could be the simplest air-breathing engine for the hypersonic flight regime.This paper presents a comprehensive and systematic review of the research progress on solid-fueled Scramjet in various institutes and universities.It summarizes a progress overview of three types of the solid-fueled Scramjet,which covers a wealth of landmark numerical and experimental results.Based on this,several relevant key technologies are proposed.Several inherent scientific issues are refined,such as the mixing mechanism of multi-phase flow and supersonic airflow,ignition and combustion mechanism of the condensed phase in a supersonic airflow,and coupling mechanism of gas and solid phase in a supersonic flow.Finally,the historical development trend is clarified,and some recommendations are provided for future solid-fueled Scramjet. 展开更多
关键词 Combustor performance Flame stabilization SELF-IGNITION Solid-fueled Scramjet supersonic combustion ramjet
原文传递
Experimental investigation on flame stabilization of a kerosene-fueled scramjet combustor with pilot hydrogen 被引量:3
18
作者 Wen SHI Ye TIAN +3 位作者 Wan-zhou ZHANG Wei-xin DENG Fu-yu ZHONG Jia-ling LE 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2020年第8期663-672,共10页
Flame stabilization in a kerosene-fueled scramjet combustor was investigated experimentally through Schlieren,flame luminosity,and wall pressure measurement,aiming to obtain better insight into combustion characterist... Flame stabilization in a kerosene-fueled scramjet combustor was investigated experimentally through Schlieren,flame luminosity,and wall pressure measurement,aiming to obtain better insight into combustion characteristics.Experiments were conducted in a direct-connected supersonic combustion facility with inflow conditions of Mach number 2.0,stagnation pressure 0.82 MPa,and temperature 950 K,simulating the flight condition of Mach number 4.0.Results revealed that kerosene was able to be ignited when the equivalence ratio of pilot hydrogen reached 0.080,but was unsuccessful when the equivalence ratio was 0.040.Once ignited,the intense combustion induced high back pressure forcing the flame to spread into the isolator.The pilot flame invariably appeared in the cavity shear layer and attached to the cavity ramp under different equivalence ratios of pilot hydrogen.With the mass flux of pilot hydrogen increased,the kerosene flame located near the cavity ramp was asymmetrical and unstable since it propagated upstream repeatedly.Therefore,the kerosene could be ignited by a suitable equivalence ratio of continuous pilot hydrogen,potentially accompanied with unstable combustion. 展开更多
关键词 SCRAMJET Flame stabilization Pilot hydrogen KEROSENE supersonic combustion
原文传递
Flamelet-like models applied in scramjet combustors:A state of art and prospect 被引量:1
19
作者 Tao TANG Zhenguo WANG +4 位作者 Yuhui HUANG Mingbo SUN Hongbo WANG Guoyan ZHAO Jiangfei YU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第10期24-43,共20页
Developing supersonic combustion models with efficiency,accuracy and practicality is important foundation to deeply understand the complex combustion processes in scramjet engines.Characterized by efficiency and intui... Developing supersonic combustion models with efficiency,accuracy and practicality is important foundation to deeply understand the complex combustion processes in scramjet engines.Characterized by efficiency and intuition,the flamelet-like models are widely used models in computational combustion methods.However,the supersonic combustion flow field has the nature of strong compressibility,multiple modality,and multiple scales,which poses a great challenge to the traditional flamelet-like models with fixed boundary conditions,and then the complex chemical reaction mechanisms that may face will impose additional computational burden.In this context,this paper reviews the flamelet-like models used in scramjet engines,and summarizes prominent issues in the application practice,including modeling partially premixed combustion,defining progress variable,solving temperature efficiently,evaluating assumed Probability Density Function(PDF)models,and treating mixture fraction variance.Furthermore,possible prospects and directions of improvements are proposed and highlighted for the flamelet-like models.To fully describe the physicochemical scenario and address the raised challenges,these improvements are dedicated to dealing with the compressibility,temperature rise,time-scales,species of interest,multi-inlet combustion,the progress variable definition,and the higher Mach number flight condition. 展开更多
关键词 combustion model Flamelet-like model Model improvements supersonic combustion SCRAMJET
原文传递
Effect of ramp-cavity on hydrogen fueled scramjet combustor 被引量:1
20
作者 J.V.S.Moorthy B.Rajinikanth +1 位作者 B.V.N.Charyulu G.Amba Prasad Rao 《Propulsion and Power Research》 SCIE 2014年第1期22-28,共7页
Sustained combustion and optimization of combustor are the two challenges being faced by combustion scientists working in the area of supersonic combustion.Thorough mixing,lower stagnation pressure losses,positive thr... Sustained combustion and optimization of combustor are the two challenges being faced by combustion scientists working in the area of supersonic combustion.Thorough mixing,lower stagnation pressure losses,positive thrust and sustained combustion are the key issues in the field of supersonic combustion.Special fluid mechanism is required to achieve good mixing.To induce such mechanisms in supersonic inflows,the fuel injectors should be critically shaped incurring less flow losses.Present investigations are focused on the effect of fuel injection scheme on a model scramjet combustor performance.Ramps at supersonic flow generate axial vortices that help in macro-mixing of fuel with air.Interaction of shocks generated by ramps with the fuel stream generates boro-clinic torque at the air&liquid fuel interface,enhancing micro-mixing.Recirculation zones present in cavities increase the residence time of the combustible mixture.Making use of the advantageous features of both,a ramp-cavity combustor is designed.The combustor has two sections.First,constant height section consists of a backward facing step followed by ramps and cavities on both the top and bottom walls.The ramps are located alternately on top and bottom walls.The complete combustor width is utilized for the cavities.The second section of the combustor is diverging area section.This is provided to avoid thermal choking.In the present work gaseous hydrogen is considered as fuel.This study was mainly focused on the mixing different fuel injection locations.It was found that injecting fuel upstream of the ramp was beneficial from fuel spread point of view. 展开更多
关键词 supersonic combustion combustion instabilities RAMPS CAVITIES MIXING
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部