In response to the weaknesses of traditional agricultural equipment chassis with poor environmental adaptability and inferior mobility, a novel unmanned agricultural machinery chassis has been developed that can opera...In response to the weaknesses of traditional agricultural equipment chassis with poor environmental adaptability and inferior mobility, a novel unmanned agricultural machinery chassis has been developed that can operate stably and efficiently under various complex terrain conditions. Initially, a new wheel-legged structure was designed by drawing inspiration from the motion principles of grasshopper hind legs and combining them with pneumatic-hydraulic linkage mechanisms. Kinematic analysis was conducted on this wheel-legged configuration by utilizing the D-H parameter method, which revealed that its end effector has a travel range of 0-450 mm in the X-direction, 0-840 mm in the Y-direction, and 0-770 mm in the Z-direction, thereby providing the structural foundation for features such as independent four-wheel steering, adjustable wheel track, automatic vehicle body elevation adjustment, and maintaining a level body posture on different slopes. Subsequently, theoretical analysis and structural parameter calculations were completed to design each subsystem of the unmanned chassis. Further, kinematic analysis of the wheel-legged unmanned chassis was carried out using RecurDyn, which substantiated the feasibility of achieving functions like slope leveling and autonomous obstacle negotiation. An omnidirectional leveling control system was also established, taking into account factors such as pitch angle, roll angle, virtual leg deployment, and center of gravity height. Joint simulations using Adams and Matlab were performed on the wheel-legged unmanned chassis, comparing its leveling performance with that of a PID control system. The results indicated that the maximum absolute value of leveling error was 1.08° for the pitch angle and 1.19° for the roll angle, while the standard deviations were 0.216 47° for the pitch angle and 0.176 22° for the roll angle, demonstrating that the wheel-legged unmanned chassis surpassed the PID control system in leveling performance, thus validating the correctness and feasibility of its full-directional body posture leveling control in complex environments. Finally, the wheel-legged unmanned chassis was fabricated, assembled, and subjected to in-place leveling and ground clearance adjustment tests. The experimental outcomes showed that the vehicle was capable of achieving in-place leveling with response speed and leveling accuracy meeting practical operational requirements under the action of the posture control system. Moreover, the adjustable ground clearance proved sufficient to meet the demands of actual obstacle crossing scenarios.展开更多
Background: The objective of this study was to investigate the effects of footwear on posture and balance while walking. The types of footwear investigated in this study were open back shoes, commonly worn by hospital...Background: The objective of this study was to investigate the effects of footwear on posture and balance while walking. The types of footwear investigated in this study were open back shoes, commonly worn by hospitalized patients, and closed back shoes. Previous studies have shown that open back shoes, or slippers, increase the risk of falling (among elderly). We hypothesized that our findings would suggest that open back shoes negatively affect gait mechanics in healthy individuals. Methods: Healthy individuals (n = 12) participated in a walking test while wearing closed back shoes and open back shoes. The explanatory variables in this study were the analysis of gait, posture, and balance before and after walking. The objective variable was footwear (closed back shoes vs. open back shoes). A paired t-test was performed to detect significant differences between the two conditions. Results: Among the test items measured, we found a significant difference in minimum wide tilt angle and left-right differences in step length and intensity while walking between the conditions of closed back shoes and open back shoes. These results suggest that open back shoes could negatively impact posture and balance while walking, even in healthy subjects. Conclusion: It is imperative to improve patient awareness of the risk of falling. We believe that the inclusion of our findings in educational pamphlets and in-house notices could help improve patient awareness and more effectively prevent falls among patients.展开更多
基金supported by the Key Laboratory of Modern Agricultural Intelligent Equipment in South China,Ministry of Agriculture and Rural Affairs,China.
文摘In response to the weaknesses of traditional agricultural equipment chassis with poor environmental adaptability and inferior mobility, a novel unmanned agricultural machinery chassis has been developed that can operate stably and efficiently under various complex terrain conditions. Initially, a new wheel-legged structure was designed by drawing inspiration from the motion principles of grasshopper hind legs and combining them with pneumatic-hydraulic linkage mechanisms. Kinematic analysis was conducted on this wheel-legged configuration by utilizing the D-H parameter method, which revealed that its end effector has a travel range of 0-450 mm in the X-direction, 0-840 mm in the Y-direction, and 0-770 mm in the Z-direction, thereby providing the structural foundation for features such as independent four-wheel steering, adjustable wheel track, automatic vehicle body elevation adjustment, and maintaining a level body posture on different slopes. Subsequently, theoretical analysis and structural parameter calculations were completed to design each subsystem of the unmanned chassis. Further, kinematic analysis of the wheel-legged unmanned chassis was carried out using RecurDyn, which substantiated the feasibility of achieving functions like slope leveling and autonomous obstacle negotiation. An omnidirectional leveling control system was also established, taking into account factors such as pitch angle, roll angle, virtual leg deployment, and center of gravity height. Joint simulations using Adams and Matlab were performed on the wheel-legged unmanned chassis, comparing its leveling performance with that of a PID control system. The results indicated that the maximum absolute value of leveling error was 1.08° for the pitch angle and 1.19° for the roll angle, while the standard deviations were 0.216 47° for the pitch angle and 0.176 22° for the roll angle, demonstrating that the wheel-legged unmanned chassis surpassed the PID control system in leveling performance, thus validating the correctness and feasibility of its full-directional body posture leveling control in complex environments. Finally, the wheel-legged unmanned chassis was fabricated, assembled, and subjected to in-place leveling and ground clearance adjustment tests. The experimental outcomes showed that the vehicle was capable of achieving in-place leveling with response speed and leveling accuracy meeting practical operational requirements under the action of the posture control system. Moreover, the adjustable ground clearance proved sufficient to meet the demands of actual obstacle crossing scenarios.
文摘Background: The objective of this study was to investigate the effects of footwear on posture and balance while walking. The types of footwear investigated in this study were open back shoes, commonly worn by hospitalized patients, and closed back shoes. Previous studies have shown that open back shoes, or slippers, increase the risk of falling (among elderly). We hypothesized that our findings would suggest that open back shoes negatively affect gait mechanics in healthy individuals. Methods: Healthy individuals (n = 12) participated in a walking test while wearing closed back shoes and open back shoes. The explanatory variables in this study were the analysis of gait, posture, and balance before and after walking. The objective variable was footwear (closed back shoes vs. open back shoes). A paired t-test was performed to detect significant differences between the two conditions. Results: Among the test items measured, we found a significant difference in minimum wide tilt angle and left-right differences in step length and intensity while walking between the conditions of closed back shoes and open back shoes. These results suggest that open back shoes could negatively impact posture and balance while walking, even in healthy subjects. Conclusion: It is imperative to improve patient awareness of the risk of falling. We believe that the inclusion of our findings in educational pamphlets and in-house notices could help improve patient awareness and more effectively prevent falls among patients.