A fault diagnosis model is proposed based on fuzzy support vector machine (FSVM) combined with fuzzy clustering (FC).Considering the relationship between the sample point and non-self class,FC algorithm is applied to ...A fault diagnosis model is proposed based on fuzzy support vector machine (FSVM) combined with fuzzy clustering (FC).Considering the relationship between the sample point and non-self class,FC algorithm is applied to generate fuzzy memberships.In the algorithm,sample weights based on a distribution density function of data point and genetic algorithm (GA) are introduced to enhance the performance of FC.Then a multi-class FSVM with radial basis function kernel is established according to directed acyclic graph algorithm,the penalty factor and kernel parameter of which are optimized by GA.Finally,the model is executed for multi-class fault diagnosis of rolling element bearings.The results show that the presented model achieves high performances both in identifying fault types and fault degrees.The performance comparisons of the presented model with SVM and distance-based FSVM for noisy case demonstrate the capacity of dealing with noise and generalization.展开更多
For the existing support vector machine, when recognizing more questions, the shortcomings of high computational complexity and low recognition rate under the low SNR are emerged. The characteristic parameter of the s...For the existing support vector machine, when recognizing more questions, the shortcomings of high computational complexity and low recognition rate under the low SNR are emerged. The characteristic parameter of the signal is extracted and optimized by using a clustering algorithm, support vector machine is trained by grading algorithm so as to enhance the rate of convergence, improve the performance of recognition under the low SNR and realize modulation recognition of the signal based on the modulation system of the constellation diagram in this paper. Simulation results show that the average recognition rate based on this algorithm is enhanced over 30% compared with methods that adopting clustering algorithm or support vector machine respectively under the low SNR. The average recognition rate can reach 90% when the SNR is 5 dB, and the method is easy to be achieved so that it has broad application prospect in the modulating recognition.展开更多
针对模糊C均值算法(fuzzy C-means algorithm,简称FCM)在入侵检测中需要预先指定聚类数的问题,提出了一种自动决定聚类数算法(fuzzy C-means and support vector machine algorithm,简称F-CMSVM).它首先用模糊C均值算法把目标数据集分...针对模糊C均值算法(fuzzy C-means algorithm,简称FCM)在入侵检测中需要预先指定聚类数的问题,提出了一种自动决定聚类数算法(fuzzy C-means and support vector machine algorithm,简称F-CMSVM).它首先用模糊C均值算法把目标数据集分为两类,然后使用带有模糊成员函数的支持向量机(support vector machihe,简称SVM)算法对结果进行评估以确定目标数据集是否可分,再迭代计算,最终得到聚类结果.支持向量机算法引入模糊C均值算法得出的隶属矩阵作为模糊成员函数,使得不同的输入样本可以得到不同的惩罚值,从而得到最优的分类超平面.该算法既不需要对训练数据集进行标记,也不需要指定聚类数,因此是一种真正的无监督算法.在对KDD CUP 1999数据集的仿真实验结果表明,该算法不仅能够得到最佳聚类数,而且对入侵有较好的检测效果.展开更多
传统的负荷密度指标的求取方法通常采用经验法或简单类比法,难以满足精度要求,从负荷密度与其影响因素存在着某种非线性关系的角度出发,提出了一种基于最小二乘支持向量机(least squares support vector machine,LS-SVM)的配电网空间负...传统的负荷密度指标的求取方法通常采用经验法或简单类比法,难以满足精度要求,从负荷密度与其影响因素存在着某种非线性关系的角度出发,提出了一种基于最小二乘支持向量机(least squares support vector machine,LS-SVM)的配电网空间负荷预测方法。该方法首先引入模糊C–均值算法把各类用地性质负荷聚类为几个等级,建立比较精确的负荷密度指标体系;然后根据待预测地块的规划属性,在体系中为LS-SVM预测模型选出与预测样本特征更为相似的样本进行训练,提高LS-SVM的泛化能力和预测精度;采用遗传算法对LS-SVM预测模型的参数进行自动优化,进一步提高预测模型的适应性和预测精度,实例验证了该方法的实用性和有效性。展开更多
基金Supported by the joint fund of National Natural Science Foundation of China and Civil Aviation Administration Foundation of China(No.U1233201)
文摘A fault diagnosis model is proposed based on fuzzy support vector machine (FSVM) combined with fuzzy clustering (FC).Considering the relationship between the sample point and non-self class,FC algorithm is applied to generate fuzzy memberships.In the algorithm,sample weights based on a distribution density function of data point and genetic algorithm (GA) are introduced to enhance the performance of FC.Then a multi-class FSVM with radial basis function kernel is established according to directed acyclic graph algorithm,the penalty factor and kernel parameter of which are optimized by GA.Finally,the model is executed for multi-class fault diagnosis of rolling element bearings.The results show that the presented model achieves high performances both in identifying fault types and fault degrees.The performance comparisons of the presented model with SVM and distance-based FSVM for noisy case demonstrate the capacity of dealing with noise and generalization.
基金supported in part by the National Natural Science Foundation of China under Grand No.61871129 and No.61301179Projects of Science and Technology Plan Guangdong Province under Grand No.2014A010101284
文摘For the existing support vector machine, when recognizing more questions, the shortcomings of high computational complexity and low recognition rate under the low SNR are emerged. The characteristic parameter of the signal is extracted and optimized by using a clustering algorithm, support vector machine is trained by grading algorithm so as to enhance the rate of convergence, improve the performance of recognition under the low SNR and realize modulation recognition of the signal based on the modulation system of the constellation diagram in this paper. Simulation results show that the average recognition rate based on this algorithm is enhanced over 30% compared with methods that adopting clustering algorithm or support vector machine respectively under the low SNR. The average recognition rate can reach 90% when the SNR is 5 dB, and the method is easy to be achieved so that it has broad application prospect in the modulating recognition.
文摘针对模糊C均值算法(fuzzy C-means algorithm,简称FCM)在入侵检测中需要预先指定聚类数的问题,提出了一种自动决定聚类数算法(fuzzy C-means and support vector machine algorithm,简称F-CMSVM).它首先用模糊C均值算法把目标数据集分为两类,然后使用带有模糊成员函数的支持向量机(support vector machihe,简称SVM)算法对结果进行评估以确定目标数据集是否可分,再迭代计算,最终得到聚类结果.支持向量机算法引入模糊C均值算法得出的隶属矩阵作为模糊成员函数,使得不同的输入样本可以得到不同的惩罚值,从而得到最优的分类超平面.该算法既不需要对训练数据集进行标记,也不需要指定聚类数,因此是一种真正的无监督算法.在对KDD CUP 1999数据集的仿真实验结果表明,该算法不仅能够得到最佳聚类数,而且对入侵有较好的检测效果.
文摘传统的负荷密度指标的求取方法通常采用经验法或简单类比法,难以满足精度要求,从负荷密度与其影响因素存在着某种非线性关系的角度出发,提出了一种基于最小二乘支持向量机(least squares support vector machine,LS-SVM)的配电网空间负荷预测方法。该方法首先引入模糊C–均值算法把各类用地性质负荷聚类为几个等级,建立比较精确的负荷密度指标体系;然后根据待预测地块的规划属性,在体系中为LS-SVM预测模型选出与预测样本特征更为相似的样本进行训练,提高LS-SVM的泛化能力和预测精度;采用遗传算法对LS-SVM预测模型的参数进行自动优化,进一步提高预测模型的适应性和预测精度,实例验证了该方法的实用性和有效性。