期刊文献+
共找到6,496篇文章
< 1 2 250 >
每页显示 20 50 100
POSITIVE DEFINITE KERNEL IN SUPPORT VECTOR MACHINE(SVM) 被引量:3
1
作者 谢志鹏 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第2期114-121,共8页
The relationship among Mercer kernel, reproducing kernel and positive definite kernel in support vector machine (SVM) is proved and their roles in SVM are discussed. The quadratic form of the kernel matrix is used t... The relationship among Mercer kernel, reproducing kernel and positive definite kernel in support vector machine (SVM) is proved and their roles in SVM are discussed. The quadratic form of the kernel matrix is used to confirm the positive definiteness and their construction. Based on the Bochner theorem, some translation invariant kernels are checked in their Fourier domain. Some rotation invariant radial kernels are inspected according to the Schoenberg theorem. Finally, the construction of discrete scaling and wavelet kernels, the kernel selection and the kernel parameter learning are discussed. 展开更多
关键词 support vector machines(svms) mercer kernel reproducing kernel positive definite kernel scaling and wavelet kernel
下载PDF
Machine learning model based on non-convex penalized huberized-SVM
2
作者 Peng Wang Ji Guo Lin-Feng Li 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第1期81-94,共14页
The support vector machine(SVM)is a classical machine learning method.Both the hinge loss and least absolute shrinkage and selection operator(LASSO)penalty are usually used in traditional SVMs.However,the hinge loss i... The support vector machine(SVM)is a classical machine learning method.Both the hinge loss and least absolute shrinkage and selection operator(LASSO)penalty are usually used in traditional SVMs.However,the hinge loss is not differentiable,and the LASSO penalty does not have the Oracle property.In this paper,the huberized loss is combined with non-convex penalties to obtain a model that has the advantages of both the computational simplicity and the Oracle property,contributing to higher accuracy than traditional SVMs.It is experimentally demonstrated that the two non-convex huberized-SVM methods,smoothly clipped absolute deviation huberized-SVM(SCAD-HSVM)and minimax concave penalty huberized-SVM(MCP-HSVM),outperform the traditional SVM method in terms of the prediction accuracy and classifier performance.They are also superior in terms of variable selection,especially when there is a high linear correlation between the variables.When they are applied to the prediction of listed companies,the variables that can affect and predict financial distress are accurately filtered out.Among all the indicators,the indicators per share have the greatest influence while those of solvency have the weakest influence.Listed companies can assess the financial situation with the indicators screened by our algorithm and make an early warning of their possible financial distress in advance with higher precision. 展开更多
关键词 Huberized loss machine learning Non-convex penalties support vector machine(svm)
下载PDF
Facial Expression Recognition Model Depending on Optimized Support Vector Machine 被引量:1
3
作者 Amel Ali Alhussan Fatma M.Talaat +4 位作者 El-Sayed M.El-kenawy Abdelaziz A.Abdelhamid Abdelhameed Ibrahim Doaa Sami Khafaga Mona Alnaggar 《Computers, Materials & Continua》 SCIE EI 2023年第7期499-515,共17页
In computer vision,emotion recognition using facial expression images is considered an important research issue.Deep learning advances in recent years have aided in attaining improved results in this issue.According t... In computer vision,emotion recognition using facial expression images is considered an important research issue.Deep learning advances in recent years have aided in attaining improved results in this issue.According to recent studies,multiple facial expressions may be included in facial photographs representing a particular type of emotion.It is feasible and useful to convert face photos into collections of visual words and carry out global expression recognition.The main contribution of this paper is to propose a facial expression recognitionmodel(FERM)depending on an optimized Support Vector Machine(SVM).To test the performance of the proposed model(FERM),AffectNet is used.AffectNet uses 1250 emotion-related keywords in six different languages to search three major search engines and get over 1,000,000 facial photos online.The FERM is composed of three main phases:(i)the Data preparation phase,(ii)Applying grid search for optimization,and(iii)the categorization phase.Linear discriminant analysis(LDA)is used to categorize the data into eight labels(neutral,happy,sad,surprised,fear,disgust,angry,and contempt).Due to using LDA,the performance of categorization via SVM has been obviously enhanced.Grid search is used to find the optimal values for hyperparameters of SVM(C and gamma).The proposed optimized SVM algorithm has achieved an accuracy of 99%and a 98%F1 score. 展开更多
关键词 Facial expression recognition machine learning linear dis-criminant analysis(LDA) support vector machine(svm) grid search
下载PDF
Face Recognition Based on Support Vector Machine and Nearest Neighbor Classifier 被引量:8
4
作者 Zhang Yankun & Liu Chongqing Institute of Image Processing and Pattern Recognition, Shanghai Jiao long University, Shanghai 200030 P.R.China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第3期73-76,共4页
Support vector machine (SVM), as a novel approach in pattern recognition, has demonstrated a success in face detection and face recognition. In this paper, a face recognition approach based on the SVM classifier with ... Support vector machine (SVM), as a novel approach in pattern recognition, has demonstrated a success in face detection and face recognition. In this paper, a face recognition approach based on the SVM classifier with the nearest neighbor classifier (NNC) is proposed. The principal component analysis (PCA) is used to reduce the dimension and extract features. Then one-against-all stratedy is used to train the SVM classifiers. At the testing stage, we propose an al- 展开更多
关键词 Face recognition support vector machine Nearest neighbor classifier Principal component analysis.
下载PDF
An Efficient and Robust Fall Detection System Using Wireless Gait Analysis Sensor with Artificial Neural Network (ANN) and Support Vector Machine (SVM) Algorithms 被引量:2
5
作者 Bhargava Teja Nukala Naohiro Shibuya +5 位作者 Amanda Rodriguez Jerry Tsay Jerry Lopez Tam Nguyen Steven Zupancic Donald Yu-Chun Lie 《Open Journal of Applied Biosensor》 2014年第4期29-39,共11页
In this work, a total of 322 tests were taken on young volunteers by performing 10 different falls, 6 different Activities of Daily Living (ADL) and 7 Dynamic Gait Index (DGI) tests using a custom-designed Wireless Ga... In this work, a total of 322 tests were taken on young volunteers by performing 10 different falls, 6 different Activities of Daily Living (ADL) and 7 Dynamic Gait Index (DGI) tests using a custom-designed Wireless Gait Analysis Sensor (WGAS). In order to perform automatic fall detection, we used Back Propagation Artificial Neural Network (BP-ANN) and Support Vector Machine (SVM) based on the 6 features extracted from the raw data. The WGAS, which includes a tri-axial accelerometer, 2 gyroscopes, and a MSP430 microcontroller, is worn by the subjects at either T4 (at back) or as a belt-clip in front of the waist during the various tests. The raw data is wirelessly transmitted from the WGAS to a near-by PC for real-time fall classification. The BP ANN is optimized by varying the training, testing and validation data sets and training the network with different learning schemes. SVM is optimized by using three different kernels and selecting the kernel for best classification rate. The overall accuracy of BP ANN is obtained as 98.20% with LM and RPROP training from the T4 data, while from the data taken at the belt, we achieved 98.70% with LM and SCG learning. The overall accuracy using SVM was 98.80% and 98.71% with RBF kernel from the T4 and belt position data, respectively. 展开更多
关键词 Artificial Neural Network (ANN) Back Propagation FALL Detection FALL Prevention GAIT Analysis SENSOR support vector machine (svm) WIRELESS SENSOR
下载PDF
Support Vector Machines(SVM)-Markov Chain Prediction Model of Mining Water Inflow 被引量:2
6
作者 Kai HUANG 《Agricultural Science & Technology》 CAS 2017年第8期1551-1554,1558,共5页
This study was conducted to establish a Support Vector Machines(SVM)-Markov Chain prediction model for prediction of mining water inflow. According to the raw data sequence, the Support Vector Machines(SVM) model was ... This study was conducted to establish a Support Vector Machines(SVM)-Markov Chain prediction model for prediction of mining water inflow. According to the raw data sequence, the Support Vector Machines(SVM) model was built, and then revised by means of a Markov state change probability matrix. Through dividing the state and analyzing absolute errors and relative errors and other indexes of the measured value and the fitted value of SVM, the prediction results were improved. Finally,the model was used to calculate relative errors. Through predicting and analyzing mining water inflow, the prediction results of the model were satisfactory. The results of this study enlarge the application scope of the Support Vector Machines(SVM) prediction model and provide a new method for scientific forecasting water inflow in coal mining. 展开更多
关键词 Mining water inflow support vector machines svm Markov Chain
下载PDF
Support vector machines approach to mean particle size of rock fragmentation due to bench blasting prediction 被引量:19
7
作者 史秀志 周健 +2 位作者 吴帮标 黄丹 魏威 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第2期432-441,共10页
Aiming at the problems of the traditional method of assessing distribution of particle size in bench blasting, a support vector machines (SVMs) regression methodology was used to predict the mean particle size (X50... Aiming at the problems of the traditional method of assessing distribution of particle size in bench blasting, a support vector machines (SVMs) regression methodology was used to predict the mean particle size (X50) resulting from rock blast fragmentation in various mines based on the statistical learning theory. The data base consisted of blast design parameters, explosive parameters, modulus of elasticity and in-situ block size. The seven input independent variables used for the SVMs model for the prediction of X50 of rock blast fragmentation were the ratio of bench height to drilled burden (H/B), ratio of spacing to burden (S/B), ratio of burden to hole diameter (B/D), ratio of stemming to burden (T/B), powder factor (Pf), modulus of elasticity (E) and in-situ block size (XB). After using the 90 sets of the measured data in various mines and rock formations in the world for training and testing, the model was applied to 12 another blast data for validation of the trained support vector regression (SVR) model. The prediction results of SVR were compared with those of artificial neural network (ANN), multivariate regression analysis (MVRA) models, conventional Kuznetsov method and the measured X50 values. The proposed method shows promising results and the prediction accuracy of SVMs model is acceptable. 展开更多
关键词 rock fragmentation BLASTING mean panicle size (X50) support vector machines svms) PREDICTION
下载PDF
采用改进遗传算法优化LS-SVM逆系统的外转子无铁心无轴承永磁同步发电机解耦控制 被引量:1
8
作者 朱熀秋 沈良瑜 《中国电机工程学报》 EI CSCD 北大核心 2024年第5期2037-2046,I0032,共11页
为了实现外转子无铁心无轴承永磁同步发电机(outer rotor coreless bearingless permanent magnet synchronous generator,ORC-BPMSG)的精确控制,提出一种基于改进遗传算法(improved genetic algorithm,IGA)优化最小二乘支持向量机(leas... 为了实现外转子无铁心无轴承永磁同步发电机(outer rotor coreless bearingless permanent magnet synchronous generator,ORC-BPMSG)的精确控制,提出一种基于改进遗传算法(improved genetic algorithm,IGA)优化最小二乘支持向量机(least square support vector machine,LS-SVM)逆系统的解耦控制策略。首先,基于ORC-BPMSG的结构及工作原理,推导其数学模型,并分析其可逆性。其次,建立LS-SVM回归方程,并采用IGA优化LS-SVM的性能参数,从而训练得到逆系统。然后,将逆系统与原系统串接,形成伪线性系统,实现了ORC-BPMSG的线性化和解耦。最后,将提出的控制方法与传统LS-SVM逆系统控制方法进行对比仿真和实验。仿真和实验结果表明:所提出的控制策略可以较好地实现ORC-BPMSG输出电压和悬浮力、以及悬浮力之间的解耦控制。 展开更多
关键词 外转子无铁心无轴承永磁同步发电机 最小二乘支持向量机 逆系统 改进遗传算法 解耦控制
下载PDF
基于RS-PCA-SVM的建筑项目安全预测模型
9
作者 李永清 马亚冰 凤亚红 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第9期1243-1247,1261,共6页
为了减少建筑项目安全事故的发生,文章提出一种基于RS-PCA-SVM建筑项目安全组合预测模型,采用粗糙集理论(rough set,RS)对数据进行属性约简,剔除交叉和冗余信息,降低输入变量维数和计算复杂度,减少训练时间;利用主成分分析(principal co... 为了减少建筑项目安全事故的发生,文章提出一种基于RS-PCA-SVM建筑项目安全组合预测模型,采用粗糙集理论(rough set,RS)对数据进行属性约简,剔除交叉和冗余信息,降低输入变量维数和计算复杂度,减少训练时间;利用主成分分析(principal component analysis,PCA)法进行降维处理,除去贡献率较低的主成分,将剩余主成分作为支持向量机(support vector machine,SVM)的输入变量,并选择自适应权重粒子群优化算法(particle swarm optimization,PSO)优化SVM的参数,避免参数选择的盲目性。结果表明:该模型的平均预测准确率为93.78%,相比传统方法预测精度高、计算速度快。 展开更多
关键词 属性约简 主成分分析(PCA)法 支持向量机(svm) 预测模型
下载PDF
基于SVM的干线输气管道泄漏压降速率信号识别
10
作者 吴瑕 陈红环 +2 位作者 贾文龙 孙溢彬 任思波 《中国安全科学学报》 CAS CSCD 北大核心 2024年第6期119-126,共8页
为解决压缩机抽吸或截断阀截断形成的压降信号导致截断阀发生误关断,以及小孔泄漏因管道压降不显著导致截断阀不动作的问题,以某输气干线为对象建立仿真模型,获取压缩机抽吸、截断阀紧急截断及管道泄漏3类不同工况下的300组压降信号,根... 为解决压缩机抽吸或截断阀截断形成的压降信号导致截断阀发生误关断,以及小孔泄漏因管道压降不显著导致截断阀不动作的问题,以某输气干线为对象建立仿真模型,获取压缩机抽吸、截断阀紧急截断及管道泄漏3类不同工况下的300组压降信号,根据对点检测法计算出压降信号的压降速率值;以奇异值分解(SVD)法和极差归一化方法提取压降速率信号特征,采用支持向量机(SVM)法识别不同压降速率特征值信号,获取所对应的工况类型;针对SVM模型中的核函数参数与惩罚因子设置不合理,影响算法识别准确性的问题,采用教与学优化算法(TLBO)优化核函数参数与惩罚因子,建立干线输气管道泄漏信号智能识别的TLBO-SVM模型;应用该模型,分类识别该管道在3类工况下的300组模拟压降速率信号。结果表明:该模型对3类不同工况下压降速率信号的识别准确率为92.22%;对泄漏口径为50~125 mm,压降速率范围为0.01~0.07 MPa/min的小孔泄漏,识别准确率为96.67%。针对某干线管道的实际泄漏压降速率信号,TLBO-SVM识别到的准确率为100%。 展开更多
关键词 支持向量机(svm) 干线输气管道 压降速率信号 泄漏压力信号 截断阀
下载PDF
不平衡数据下基于SVM增量学习的指挥信息系统状态监控方法
11
作者 焦志强 易侃 +1 位作者 张杰勇 姚佩阳 《系统工程与电子技术》 EI CSCD 北大核心 2024年第3期992-1003,共12页
针对指挥信息系统历史状态样本有限的特点,基于支持向量机(support vector machines,SVM)设计了一种面向不平衡数据的SVM增量学习方法。针对系统正常/异常状态样本不平衡的情况,首先利用支持向量生成一部分新样本,然后通过分带的思想逐... 针对指挥信息系统历史状态样本有限的特点,基于支持向量机(support vector machines,SVM)设计了一种面向不平衡数据的SVM增量学习方法。针对系统正常/异常状态样本不平衡的情况,首先利用支持向量生成一部分新样本,然后通过分带的思想逐带产生分布更加均匀的新样本以调节原样本集的不平衡比。针对系统监控实时性要求高且在运行过程中会有新样本不断加入的特点,采用增量学习的方式对分类模型进行持续更新,在放松KKT(Karush-Kuhn-Tucker)更新触发条件的基础上,通过定义样本重要度并引入保留率和遗忘率的方式减少了增量学习过程中所需训练的样本数量。为了验证算法的有效性和优越性,实验部分在真实系统中获得的数据集以及UCI数据集中3类6组不平衡数据集中与现有的算法进行了对比。结果表明,所提算法能够有效实现对不平衡数据的增量学习,从而满足指挥信息系统状态监控的需求。 展开更多
关键词 指挥信息系统 系统监控 支持向量机 不平衡数据 增量学习
下载PDF
基于改进CNN-SVM的井下钻头磨损状态评估研究
12
作者 李玉梅 邓杨林 +3 位作者 李基伟 李乾 杨磊 于丽维 《石油机械》 北大核心 2024年第6期12-19,共8页
现有钻头磨损评估方法中,存在人工特征提取过程可能无法完全提取正确分类所需的信号动态特征,及需要对各个统计量进行大量计算等问题。为此,提出了一种新的基于改进卷积神经网络支持向量机(CNN-SVM)的钻头磨损程度评估算法。该算法将采... 现有钻头磨损评估方法中,存在人工特征提取过程可能无法完全提取正确分类所需的信号动态特征,及需要对各个统计量进行大量计算等问题。为此,提出了一种新的基于改进卷积神经网络支持向量机(CNN-SVM)的钻头磨损程度评估算法。该算法将采集的近钻头原始振动数据导入CNN-Softmax模型,通过训练好的CNN模型从近钻头数据中提取主要的特征参数,将提取的稀疏特征向量输入SVM并进行故障分类,利用遗传算法实现SVM参数的优化选择,最后应用t分布随机邻域法近邻嵌入,使其故障特征学习过程可视化,以评估其特征提取能力。采用该算法对钻头磨损的现场试验数据进行了分析。分析结果表明:基于改进CNN-SVM的井下钻头磨损状态评估算法准确率高达98.33%。所得结论可为实现钻头磨损状态的进一步监测提供理论支撑。 展开更多
关键词 钻头磨损状态评估 卷积神经网络 支持向量机 特征提取可视化 平均池化采样
下载PDF
基于SVM算法的虚假航迹识别
13
作者 代睿 鹿瑶 安锐 《导航定位与授时》 CSCD 2024年第2期103-110,共8页
针对云雨杂波和主被动干扰导致多雷达传感器产生虚假目标航迹的问题,利用支持向量机(SVM)算法的自主学习能力,通过构建基于数据驱动的判别模型进行虚假航迹识别。针对航迹起始得到的目标潜在航迹,利用人工智能数据驱动、自学习的特点,... 针对云雨杂波和主被动干扰导致多雷达传感器产生虚假目标航迹的问题,利用支持向量机(SVM)算法的自主学习能力,通过构建基于数据驱动的判别模型进行虚假航迹识别。针对航迹起始得到的目标潜在航迹,利用人工智能数据驱动、自学习的特点,设计了SVM算法。通过对已标记真假的目标航迹样本进行离线学习,形成虚假航迹识别的SVM分类器,实现了基于数据驱动的判别模型代替先验知识规则约束的固定模型,并在工程应用中,利用SVM分类器在线识别虚假航迹,完成实时剔除。通过实测雷达数据实验验证,该算法的目标虚假航迹准确率高达95%以上,完全满足实际的工程应用需求。相比基于阈值或规则进行硬性判断的传统虚假航迹识别方法,所提出的算法不仅提高了准确率,还具有较高的实时性,能够适应复杂多变的杂波环境,在实际应用中具有更强的适应性和实用性。因此,提出的基于SVM算法的虚假航迹识别方法对于密集杂波场景下的虚假航迹剔除问题具有显著的实际应用价值。 展开更多
关键词 目标跟踪 机器学习 支持向量机(svm)算法 虚假航迹
下载PDF
结合SVM与XGBoost的链式多路径覆盖测试用例生成
14
作者 钱忠胜 俞情媛 +3 位作者 张丁 姚昌森 秦朗悦 成轶伟 《软件学报》 EI CSCD 北大核心 2024年第6期2795-2820,共26页
机器学习方法可很好地与软件测试相结合,增强测试效果,但少有学者将其运用于测试数据生成方面.为进一步提高测试数据生成效率,提出一种结合SVM(support vector machine)和XGBoost(extreme gradient boosting)的链式模型,并基于此模型借... 机器学习方法可很好地与软件测试相结合,增强测试效果,但少有学者将其运用于测试数据生成方面.为进一步提高测试数据生成效率,提出一种结合SVM(support vector machine)和XGBoost(extreme gradient boosting)的链式模型,并基于此模型借助遗传算法实现多路径测试数据生成.首先,利用一定样本训练若干个用于预测路径节点状态的子模型(SVM和XGBoost),通过子模型的预测精度值筛选最优子模型,并根据路径节点顺序将其依次链接,形成一个链式模型C-SVMXGBoost(chained SVM and XGBoost).在利用遗传算法生成测试用例时,使用训练好的链式模型代替插桩法获取测试数据覆盖路径(预测路径),寻找预测路径与目标路径相似的路径集,对存在相似路径集的预测路径进行插桩验证,获取精确路径,计算适应度值.在交叉变异过程中引入样本集中路径层级深度较大的优秀测试用例进行重用,生成覆盖目标路径的测试数据.最后,保留进化生成中产生的适应度较高的个体,更新链式模型C-SVMXGBoost,进一步提高测试效率.实验表明,C-SVMXGBoost较其他各对比链式模型更适合解决路径预测问题,可提高测试效率.并且通过与已有经典方法相比,所提方法在覆盖率上提高可达15%,平均进化代数也有所降低,在较大规模程序上其降低百分比可达65%. 展开更多
关键词 测试用例 svm XGBoost 链式模型 多路径覆盖
下载PDF
基于RF-SFLA-SVM的装配式建筑高空作业工人不安全行为预警
15
作者 王军武 何娟娟 +3 位作者 宋盈辉 刘一鹏 陈兆 郭婧怡 《中国安全科学学报》 CAS CSCD 北大核心 2024年第3期1-8,共8页
为有效预警装配式建筑高空作业工人不安全行为的发生趋势或状态,增强对装配式建筑工人不安全行为(PBWUBs)的管控,采用随机森林(RF)-混合蛙跳算法(SFLA)-支持向量机(SVM)模型,开展工人不安全行为预警研究。首先,采用SHEL模型分析处于高... 为有效预警装配式建筑高空作业工人不安全行为的发生趋势或状态,增强对装配式建筑工人不安全行为(PBWUBs)的管控,采用随机森林(RF)-混合蛙跳算法(SFLA)-支持向量机(SVM)模型,开展工人不安全行为预警研究。首先,采用SHEL模型分析处于高空作业危险中的PBWUBs的影响因素,并通过RF确定关键预警指标;然后,采用SFLA对SVM的参数进行寻优改进;最后,利用RF-SFLA-SVM预警高空作业PBWUBs,提出应对措施,并与其他预警模型对比。研究结果表明:基于RF-SFLA-SVM预警高空作业PBWUBs,准确率最高,为91.67%,与其他模型的预警性能相比,最高提升14%。研究结果可为高空作业PBWUBs的防控提供参考。 展开更多
关键词 随机森林(RF) 蛙跳算法(SFLA) 支持向量机(svm) 装配式建筑 高空作业 不安全行为
下载PDF
基于CBAM-CGRU-SVM的Android恶意软件检测方法
16
作者 孙敏 成倩 丁希宁 《计算机应用》 CSCD 北大核心 2024年第5期1539-1545,共7页
随着Android恶意软件的种类和数量不断增多,检测恶意软件以保护系统安全和用户隐私变得越来越重要。针对传统的恶意软件检测模型分类准确率较低的问题,提出一种基于卷积神经网络(CNN)、门控循环单元(GRU)和支持向量机(SVM)的模型CBAM-CG... 随着Android恶意软件的种类和数量不断增多,检测恶意软件以保护系统安全和用户隐私变得越来越重要。针对传统的恶意软件检测模型分类准确率较低的问题,提出一种基于卷积神经网络(CNN)、门控循环单元(GRU)和支持向量机(SVM)的模型CBAM-CGRU-SVM。首先,在CNN中添加卷积块注意力模块(CBAM)以学习更多恶意软件的关键特征;其次,利用GRU进一步提取特征;最后,为了解决图像分类时模型泛化能力不足的问题,使用SVM代替softmax激活函数作为模型的分类函数。实验使用了Malimg公开数据集,该数据集将恶意软件数据图像化作为模型输入。实验结果表明,CBAM-CGRU-SVM模型分类准确率达到94.73%,能够更有效地对恶意软件家族进行分类。 展开更多
关键词 恶意软件 卷积神经网络 卷积块注意力模块 门控循环单元 支持向量机
下载PDF
基于粗糙集理论与PCA-APSO-SVM的沥青路面使用性能预测
17
作者 李海莲 杨斯媛 +2 位作者 祁增涛 刘忠磊 李清华 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第8期10-17,共8页
针对传统沥青路面使用性能预测精度较低的问题,建立了基于粗糙集理论(rough set,RS)与主成分分析法(principal compoent analysis,PCA)-自适应粒子群算法(adaptive particle swarm optimization,APSO)-支持向量机(support vector machin... 针对传统沥青路面使用性能预测精度较低的问题,建立了基于粗糙集理论(rough set,RS)与主成分分析法(principal compoent analysis,PCA)-自适应粒子群算法(adaptive particle swarm optimization,APSO)-支持向量机(support vector machine,SVM)的沥青路面使用性能预测模型。基于沥青路面的时序指标与影响因素指标,建立了11个初始预测指标(包括前3年的路面使用性能、当量轴次、路龄、养护性质、坑槽率、修补率、年降水量、平均气温、日照时数);通过RS属性约减筛选出9个核心指标;利用PCA提取4个主成分,得到了基于4个主成分的数据集;将APSO引入到SVM中,对数据集进行训练,并优化了SVM模型参数;建立了路面使用性能的PCA-APSO-SVM预测模型,并以G6京藏高速甘肃境内某段道路为例,对路面使用性能进行预测。研究结果表明:PCA-APSO-SVM模型预测精度较PCA-PSO-SVM、APSO-SVM、PSO-SVM有较大提高,预测结果与实际情况更加符合,能为路面养护决策提供相关参考。 展开更多
关键词 道路工程 路面使用性能预测 粗糙集理论 主成分分析 粒子群算法 支持向量机
下载PDF
基于PSO-SVM的Φ-OTDR系统模式识别研究
18
作者 朱宗玖 王宁 《科学技术与工程》 北大核心 2024年第12期5023-5029,共7页
针对相位敏感光时域反射仪(phase sensitive optical time domain reflectometer,Φ-OTDR)系统中误报率高的问题,提出一种多域特征提取与粒子群算法优化支持向量机(particle swarm optimization-support vector machine,PSO-SVM)相结合... 针对相位敏感光时域反射仪(phase sensitive optical time domain reflectometer,Φ-OTDR)系统中误报率高的问题,提出一种多域特征提取与粒子群算法优化支持向量机(particle swarm optimization-support vector machine,PSO-SVM)相结合的模式识别算法。首先,对原始信号进行差分处理后提取时域特征,并利用小波包分解方法,通过验证不同分解层数下的事件分类准确率,设定最优分解层数为6层,提取差分信号的能量特征。然后以SVM分类器为基础,利用PSO算法优化SVM分类器参数,提高光纤振动信号识别准确率。最后利用Φ-OTDR事件数据集进行验证,实验结果表明,该模式识别算法达到了95.6%的振动事件分类准确率。 展开更多
关键词 相位敏感光时域反射仪(Φ-OTDR) 小波包分解 粒子群算法(PSO) 支持向量机(svm) 模式识别
下载PDF
EHDE和WHO-SVM模型在齿轮箱故障诊断中的应用
19
作者 马晓娜 周海超 《机电工程》 CAS 北大核心 2024年第4期622-632,共11页
针对现有齿轮箱故障诊断方法对数据长度敏感的缺陷,提出了一种基于增强层次多样性熵(EHDE)和野马算法(WHO)优化支持向量机(SVM)的齿轮箱故障诊断模型。首先,传统熵值特征提取方法在特征提取阶段对数据样本的长度比较敏感,为此提出了增... 针对现有齿轮箱故障诊断方法对数据长度敏感的缺陷,提出了一种基于增强层次多样性熵(EHDE)和野马算法(WHO)优化支持向量机(SVM)的齿轮箱故障诊断模型。首先,传统熵值特征提取方法在特征提取阶段对数据样本的长度比较敏感,为此提出了增强层次多样性熵,并将其作为特征提取指标用于提取齿轮箱的故障特征;其次,采用WHO算法对SVM模型的参数进行了优化,建立了参数最优的WHO-SVM分类器;最后,将故障特征样本输入至WHO-SVM分类器中进行了训练和识别,完成了样本的故障识别;利用齿轮箱数据集分别从数据长度敏感性、算法特征提取时间、模型诊断性能三种角度对EHDE、精细复合多尺度样本熵、精细复合多尺度模糊熵、精细复合多尺度排列熵、精细复合多尺度散布熵、精细复合多尺度波动散布熵进行了对比研究。研究结果表明:EHDE方法对数据长度的要求较低,在数据长度为512时即可以取得99.1%的平均识别准确率,在诊断稳定性和诊断精度方面均优于其他对比方法;在算法的泛化性实验中,EHDE方法能够以98%的准确率识别齿轮箱的不同故障类型,具有明显的泛化性和通用性。 展开更多
关键词 齿轮箱故障诊断 增强层次多样性熵 野马算法优化支持向量机 数据长度敏感性 算法特征提取时间 模型诊断性能
下载PDF
基于GRA-GASA-SVM的煤层瓦斯含量预测方法研究 被引量:2
20
作者 田水承 任治鹏 马磊 《煤炭技术》 CAS 2024年第1期114-118,共5页
为提升煤层瓦斯含量预测精度,提出一种采用遗传模拟退火算法混合优化支持向量机(SVM)参数的瓦斯含量预测模型(GRA-GASA-SVM模型)。该模型将GA和SA整合为遗传模拟退火算法协同优化SVM的参数,以解决传统网格寻优算法取值范围无法确定和单... 为提升煤层瓦斯含量预测精度,提出一种采用遗传模拟退火算法混合优化支持向量机(SVM)参数的瓦斯含量预测模型(GRA-GASA-SVM模型)。该模型将GA和SA整合为遗传模拟退火算法协同优化SVM的参数,以解决传统网格寻优算法取值范围无法确定和单一智能算法优化程度有限等问题。利用灰色关联分析(GRA)压缩数据集维度,建立瓦斯含量预测参数体系并作为GASA-SVM的输入数据集。结果表明:SVM模型、GA-SVM模型和GASA-SVM模型10折交叉验证瓦斯含量预测总平均相对误差分别为15.98%、13.55%和10.58%。相比SVM模型和GA-SVM模型,GASA-SVM模型预测稳定性更优、预测精准度更高且对新样本泛化能力更强。 展开更多
关键词 遗传算法(GA) 模拟退火算法(SA) 支持向量机(svm) 煤层瓦斯含量 灰色关联分析(GRA)
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部