期刊文献+
共找到54篇文章
< 1 2 3 >
每页显示 20 50 100
Accelerated Recursive Feature Elimination Based on Support Vector Machine for Key Variable Identification 被引量:4
1
作者 毛勇 皮道映 +1 位作者 刘育明 孙优贤 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第1期65-72,共8页
Key variable identification for classifications is related to many trouble-shooting problems in process indus-tries. Recursive feature elimination based on support vector machine (SVM-RFE) has been proposed recently i... Key variable identification for classifications is related to many trouble-shooting problems in process indus-tries. Recursive feature elimination based on support vector machine (SVM-RFE) has been proposed recently in applica-tion for feature selection in cancer diagnosis. In this paper, SVM-RFE is used to the key variable selection in fault diag-nosis, and an accelerated SVM-RFE procedure based on heuristic criterion is proposed. The data from Tennessee East-man process (TEP) simulator is used to evaluate the effectiveness of the key variable selection using accelerated SVM-RFE (A-SVM-RFE). A-SVM-RFE integrates computational rate and algorithm effectiveness into a consistent framework. It not only can correctly identify the key variables, but also has very good computational rate. In comparison with contribution charts combined with principal component aralysis (PCA) and other two SVM-RFE algorithms, A-SVM-RFE performs better. It is more fitting for industrial application. 展开更多
关键词 variable selection support vector machine recursive feature elimination fault diagnosis
下载PDF
Coupling Analysis of Multiple Machine Learning Models for Human Activity Recognition 被引量:1
2
作者 Yi-Chun Lai Shu-Yin Chiang +1 位作者 Yao-Chiang Kan Hsueh-Chun Lin 《Computers, Materials & Continua》 SCIE EI 2024年第6期3783-3803,共21页
Artificial intelligence(AI)technology has become integral in the realm of medicine and healthcare,particularly in human activity recognition(HAR)applications such as fitness and rehabilitation tracking.This study intr... Artificial intelligence(AI)technology has become integral in the realm of medicine and healthcare,particularly in human activity recognition(HAR)applications such as fitness and rehabilitation tracking.This study introduces a robust coupling analysis framework that integrates four AI-enabled models,combining both machine learning(ML)and deep learning(DL)approaches to evaluate their effectiveness in HAR.The analytical dataset comprises 561 features sourced from the UCI-HAR database,forming the foundation for training the models.Additionally,the MHEALTH database is employed to replicate the modeling process for comparative purposes,while inclusion of the WISDM database,renowned for its challenging features,supports the framework’s resilience and adaptability.The ML-based models employ the methodologies including adaptive neuro-fuzzy inference system(ANFIS),support vector machine(SVM),and random forest(RF),for data training.In contrast,a DL-based model utilizes one-dimensional convolution neural network(1dCNN)to automate feature extraction.Furthermore,the recursive feature elimination(RFE)algorithm,which drives an ML-based estimator to eliminate low-participation features,helps identify the optimal features for enhancing model performance.The best accuracies of the ANFIS,SVM,RF,and 1dCNN models with meticulous featuring process achieve around 90%,96%,91%,and 93%,respectively.Comparative analysis using the MHEALTH dataset showcases the 1dCNN model’s remarkable perfect accuracy(100%),while the RF,SVM,and ANFIS models equipped with selected features achieve accuracies of 99.8%,99.7%,and 96.5%,respectively.Finally,when applied to the WISDM dataset,the DL-based and ML-based models attain accuracies of 91.4%and 87.3%,respectively,aligning with prior research findings.In conclusion,the proposed framework yields HAR models with commendable performance metrics,exhibiting its suitability for integration into the healthcare services system through AI-driven applications. 展开更多
关键词 Human activity recognition artificial intelligence support vector machine random forest adaptive neuro-fuzzy inference system convolution neural network recursive feature elimination
下载PDF
Parameters selection in gene selection using Gaussian kernel support vector machines by genetic algorithm 被引量:11
3
作者 毛勇 周晓波 +2 位作者 皮道映 孙优贤 WONG Stephen T.C. 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE EI CAS CSCD 2005年第10期961-973,共13页
In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying result... In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying results by using conventional linear sta- tistical methods. Recursive feature elimination based on support vector machine (SVM RFE) is an effective algorithm for gene selection and cancer classification, which are integrated into a consistent framework. In this paper, we propose a new method to select parameters of the aforementioned algorithm implemented with Gaussian kernel SVMs as better alternatives to the common practice of selecting the apparently best parameters by using a genetic algorithm to search for a couple of optimal parameter. Fast implementation issues for this method are also discussed for pragmatic reasons. The proposed method was tested on two repre- sentative hereditary breast cancer and acute leukaemia datasets. The experimental results indicate that the proposed method per- forms well in selecting genes and achieves high classification accuracies with these genes. 展开更多
关键词 Gene selection support vector machine (svm) recursive feature elimination (rfe) GENETIC algorithm (GA) Parameter SELECTION
下载PDF
基于SVM-RFE和粒子群优化算法的恶意域名检测模型 被引量:1
4
作者 赵正利 姜鹏 +1 位作者 仲国强 吴建新 《福州大学学报(自然科学版)》 CAS 北大核心 2023年第5期634-638,共5页
本研究利用机器学习和随机搜索算法,提出一种基于SVM-RFE和粒子群优化算法的恶意域名检测模型.分析域名字符特征、解析特征和相关特征,使用SVM-RFE算法进行特征权重排序,通过优化的粒子群算法确定最佳SVM参数和特征选择.实验证明该检测... 本研究利用机器学习和随机搜索算法,提出一种基于SVM-RFE和粒子群优化算法的恶意域名检测模型.分析域名字符特征、解析特征和相关特征,使用SVM-RFE算法进行特征权重排序,通过优化的粒子群算法确定最佳SVM参数和特征选择.实验证明该检测模型具有较好的效率和准确度. 展开更多
关键词 网络安全 恶意域名 支持向量机 递归特征消除 粒子群算法
下载PDF
基于SVM-RFE-BPSO算法的特征选择方法 被引量:12
5
作者 林俊 许露 刘龙 《小型微型计算机系统》 CSCD 北大核心 2015年第8期1865-1868,共4页
为了在特征选择中获得具有较高分类准确率的特征子集,提出了一种基于支持向量机递归特征消除法(SVM-RFE)和二进制粒子群算法(BPSO)的特征选择方法.该方法首先利用SVM-RFE快速去掉部分无关特征,初步缩减数据维数,然后以粒子群算法继续搜... 为了在特征选择中获得具有较高分类准确率的特征子集,提出了一种基于支持向量机递归特征消除法(SVM-RFE)和二进制粒子群算法(BPSO)的特征选择方法.该方法首先利用SVM-RFE快速去掉部分无关特征,初步缩减数据维数,然后以粒子群算法继续搜索最优子集,并将SVM-RFE算法得到的优良子作为粒子群算法的部分初始种群,使后续粒子群算法有一个较好的搜索起点.SVM-RFE既减少了粒子的搜索空间,又为其提供了先验知识,从而提高算法的搜索效率和识别精度.实验结果表明,该方法可以在分类准确率更高或相等的情况下得到维数更少的子集. 展开更多
关键词 支持向量机 特征选择 svm-rfe 粒子群算法
下载PDF
基于SVM RFE的人脸特征选择方法 被引量:4
6
作者 李伟红 龚卫国 +2 位作者 陈伟民 梁毅雄 尹克重 《光电工程》 EI CAS CSCD 北大核心 2006年第5期113-117,共5页
提出一种新的基于SVMRFE(SupportVectorMachineRecursiveFeatureElimination)的人脸特征选择方法。该方法将权重矢量和半径/间隔作为SVMRFE的特征选择标准,采用缩放因子梯度算法优化特征搜索。基于该方法构建了一种实用、有效的人脸特... 提出一种新的基于SVMRFE(SupportVectorMachineRecursiveFeatureElimination)的人脸特征选择方法。该方法将权重矢量和半径/间隔作为SVMRFE的特征选择标准,采用缩放因子梯度算法优化特征搜索。基于该方法构建了一种实用、有效的人脸特征提取、选择及识别框架,并在UMIST人脸数据库上进行了验证实验。对特征选择前后的分类能力及速度进行了分析比较,结果表明,该方法是一种实用、有效的人脸特征选择方法,可以在特征维数为80左右时,达到94.62%的分类识别率。 展开更多
关键词 特征选择 人脸识别 支持向量机 svm rfe
下载PDF
基于SVM-RFE-SFS的基因选择方法 被引量:11
7
作者 游伟 李树涛 谭明奎 《中国生物医学工程学报》 CAS CSCD 北大核心 2010年第1期93-99,共7页
基因微阵列数据通常包含大量与肿瘤分类无关的数据,会严重降低肿瘤诊断的准确率;基因微阵列数据还存在小样本、高维度的问题,也增加了肿瘤诊断的难度,所以必须对其进行基因选择。提出一种新的基于支持向量机(SVM)、联合递归特征去除(RFE... 基因微阵列数据通常包含大量与肿瘤分类无关的数据,会严重降低肿瘤诊断的准确率;基因微阵列数据还存在小样本、高维度的问题,也增加了肿瘤诊断的难度,所以必须对其进行基因选择。提出一种新的基于支持向量机(SVM)、联合递归特征去除(RFE)和序列前向选择(SFS)的基因选择方法。首先利用SVM计算每个基因的排序准则分数,再利用排序准则分数的一阶差分把基因划分为若干小组;对排序准则分数值最小的基因小组进行递归特征去除,消去噪声基因,同时对排序准则分数值最大的基因小组进行序列前向选择,选取有效信息基因。对白血病、结肠癌、乳腺癌基因微阵列数据的实验结果表明,所提出的方法运行效率高、分类性能好。 展开更多
关键词 基因选择 支持向量机 递归特征去除 序列前向选择
下载PDF
ReliefF-SVM RFE组合式特征选择人脸识别 被引量:6
8
作者 孔英会 张少明 《计算机工程与应用》 CSCD 2013年第11期169-171,212,共4页
针对人脸识别中因特征个数较多对识别的实时性和准确性影响较大的问题,提出了ReliefF-SVM RFE组合式特征选择的人脸识别方法。利用离散余弦变换提取特征和ReliefF对人脸图像特征集做特征初选,降低特征维数空间,再用改进的SVM RFE(Suppor... 针对人脸识别中因特征个数较多对识别的实时性和准确性影响较大的问题,提出了ReliefF-SVM RFE组合式特征选择的人脸识别方法。利用离散余弦变换提取特征和ReliefF对人脸图像特征集做特征初选,降低特征维数空间,再用改进的SVM RFE(Support Vector Machine Recursive Feature Elimination)选择最优特征,解决了利用SVM RFE特征选择时因特征数多而算法需多次训练耗时长的问题。对训练得到的特征排序表采用交叉留一验证方法选取最优子集,再由SVM分类识别。在UMIST人脸库上实验证明,可以在特征数为52时,达到98.84%的识别率,识别时间仅需0.037s。 展开更多
关键词 人脸识别 支持向量机回归特征消除(svm rfe) RELIEFF 离散余弦变换 特征选择
下载PDF
基于SVM-RFE算法的凋亡蛋白亚细胞定位预测 被引量:4
9
作者 刘太岗 王春华 《计算机工程与应用》 CSCD 北大核心 2017年第10期155-159,共5页
获取凋亡蛋白亚细胞定位的信息对揭示细胞程序性死亡的机制和注解蛋白质功能都具有非常重要的意义。鉴于实验方法确定亚细胞定位不仅费时费力而且代价过高,开发快速有效的计算方法预测亚细胞定位已成为生物信息学领域的重要研究内容之... 获取凋亡蛋白亚细胞定位的信息对揭示细胞程序性死亡的机制和注解蛋白质功能都具有非常重要的意义。鉴于实验方法确定亚细胞定位不仅费时费力而且代价过高,开发快速有效的计算方法预测亚细胞定位已成为生物信息学领域的重要研究内容之一。首先基于位置特异性得分矩阵提取氨基酸组分、二肽组分和自协方差变量等特征构建蛋白质序列的特征表示模型,然后采用递归特征消除法进行特征选择,最后选用支持向量机分类器在两个常用数据集上进行夹克刀检验。实验结果表明,该方法优于大多数已报道的预测方法,从而证明了其有效性。 展开更多
关键词 位置特异性得分矩阵 自协方差变换 支持向量机 递归特征消除 夹克刀检验
下载PDF
基于SVM_RFE的脑电波自动睡眠分期算法 被引量:1
10
作者 林秀晶 钱松荣 《微型电脑应用》 2015年第9期50-52,5,共3页
脑电波是睡眠疾病诊断中重要的数据。为了提高自动脑电波睡眠分期正确率,提出基于支持向量机及迭代特征消去特征选择的脑电睡眠分期方法。通过将特征选择方法 SVM_RFE拓展到多分类,以多组实验后数据的聚合分布作为特征值选择策略,为SVM... 脑电波是睡眠疾病诊断中重要的数据。为了提高自动脑电波睡眠分期正确率,提出基于支持向量机及迭代特征消去特征选择的脑电睡眠分期方法。通过将特征选择方法 SVM_RFE拓展到多分类,以多组实验后数据的聚合分布作为特征值选择策略,为SVM分类器选择合适的输入特征向量组。采用标准的开源数据,通过对比实验了无特征选择及有特征选择中的两组数据。实验结果表明,提出的方法能够有效地提高分期正确率。 展开更多
关键词 睡眠分期 支持向量机 迭代特征选择 数据聚合
下载PDF
基于SVM-RFE的水稻抗病基因筛选 被引量:1
11
作者 付媛 王岩 +3 位作者 周柚 张帆 王珏鑫 梁艳春 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2011年第6期1101-1104,共4页
提出一种改进的回归特征消去支持向量机特征选择方法(SVM-RFE)对水稻的抗病基因进行筛选.实验结果表明:在预测得到的20个与水稻抗病/敏感相关基因中,有3个基因与已知的水稻抗病基因紧密相关;2个基因与已知的水稻抗病基因有一定的相关性... 提出一种改进的回归特征消去支持向量机特征选择方法(SVM-RFE)对水稻的抗病基因进行筛选.实验结果表明:在预测得到的20个与水稻抗病/敏感相关基因中,有3个基因与已知的水稻抗病基因紧密相关;2个基因与已知的水稻抗病基因有一定的相关性.通过该方法能找到影响水稻生长状态(正常/染病)的基因. 展开更多
关键词 回归特征消去支持向量机 基因筛选 水稻抗病
下载PDF
基于RFE-SA-SVM的变压器故障诊断 被引量:2
12
作者 李育恒 赵峰 《电测与仪表》 北大核心 2014年第12期50-55,共6页
通过对变压器油中溶解气体进行分析,可以及早的发现变压器的故障。为了全面地反映变压器内部故障与特征气体之间的关系,提出采用5种特征气体浓度比值共计15组作为特征预输入量,并采用基因选择算法对15个特征量进行筛选,将筛选后特征量... 通过对变压器油中溶解气体进行分析,可以及早的发现变压器的故障。为了全面地反映变压器内部故障与特征气体之间的关系,提出采用5种特征气体浓度比值共计15组作为特征预输入量,并采用基因选择算法对15个特征量进行筛选,将筛选后特征量作为支持向量机模型输入。在SVM模型中,采用模拟退火算法对SVM的参数进行优化,给出其GUI界面。最后,通过数据验证基于RFE-SA-SVM模型故障诊断率要高于单一模型。 展开更多
关键词 特征选择 基因选择算法 支持向量机 故障诊断
下载PDF
基于GFCC-SVM-RFE的电力设备声音特征提取方法 被引量:2
13
作者 王赵国 韦存海 +3 位作者 彭雅妮 武明路 李军彬 翟永杰 《电力信息与通信技术》 2022年第9期34-42,共9页
火电厂电力设备声音包含了丰富的有效信息,但受限于复杂环境噪声,使得有效特征提取极其困难。为解决这一问题,文章提出一种基于GFCC-SVM-REF的特征提取方法,并在现场采集的6种设备运行声音、加入ESC-50公共数据集中的环境干扰音以及对... 火电厂电力设备声音包含了丰富的有效信息,但受限于复杂环境噪声,使得有效特征提取极其困难。为解决这一问题,文章提出一种基于GFCC-SVM-REF的特征提取方法,并在现场采集的6种设备运行声音、加入ESC-50公共数据集中的环境干扰音以及对原始设备声音加入不同分贝的高斯白噪声这3类数据上对2种经典语音识别领域的特征提取方法进行抗噪性和准确性的对比。仿真结果表明,针对所研究的数据集,GFCC-SVM-RFE方法在10 dB和20 dB的高斯白噪声下分别达到了81.04%和96.88%的准确率。 展开更多
关键词 电力设备 声音特征提取 环境噪音 梅尔频率倒谱系数 伽马通频率倒谱系数 支持向量机递归特征消除
下载PDF
纤维肌痛综合征生物标记物的筛选及免疫细胞浸润分析
14
作者 刘雅妮 杨静欢 +5 位作者 陆慧慧 易玉芳 李智翔 欧阳福 吴璟莉 魏兵 《中国组织工程研究》 CAS 北大核心 2025年第5期1091-1100,共10页
背景:纤维肌痛综合征作为常见风湿病,其发病与中枢敏化及免疫异常有关,但具体过程尚未阐明,缺乏特异性诊断标志物,不断探索该病的发病机制具有重要的临床意义。目的:基于加权基因共表达网络分析(WGCNA)等生物信息学方法和机器学习算法... 背景:纤维肌痛综合征作为常见风湿病,其发病与中枢敏化及免疫异常有关,但具体过程尚未阐明,缺乏特异性诊断标志物,不断探索该病的发病机制具有重要的临床意义。目的:基于加权基因共表达网络分析(WGCNA)等生物信息学方法和机器学习算法筛选纤维肌痛综合征潜在的诊断相关标志基因,并分析其免疫细胞浸润特征。方法:对来自基因表达综合数据库(GEO)的纤维肌痛综合征数据集转录谱进行差异分析和WGCNA分析,整合筛选出差异共表达基因,进一步采用机器学习套索回归(LASSO)算法、支持向量机递归特征消除(SVM-RFE)机器学习算法来识别核心生物标志物,并绘制受试者工作特征(ROC)曲线以评估诊断价值。最后,采用单样本基因集富集分析(ssGSEA)和基因集富集分析(GSEA)评估纤维肌痛综合征的免疫细胞浸润情况及通路富集。结果与结论:①对GSE67311数据集按照log2|(FC)|>0,P<0.05的条件进行差异分析后获得8个下调的差异表达基因;进行WGCNA分析后获得正相关性最高(r=0.22,P=0.04)的模块(MEdarkviolet)内含基因497个,负相关性最高(r=-0.41,P=6×10-5)的模块(MEsalmon2)内含基因19个;将差异表达基因与WGCNA的2个高相关性模块基因取交集,获得7个基因。②对上述7个基因进行LASSO回归算法筛选出4个基因,进行SVM-RFE机器学习算法筛选出5个基因,两者取交集后确定了3个核心基因,分别为重组1号染色体开放阅读框150蛋白(germinal center associated signaling and motility like,GCSAML)、整合素β8(Integrin beta-8,ITGB8)和羧肽酶A3(carboxypeptidase A3,CPA3);绘制3个核心基因的ROC曲线下面积分别为0.744,0.739,0.734,提示均具有很好的诊断价值,可作为纤维肌痛综合征的生物标志物。③免疫浸润分析结果显示,与对照组相比纤维肌痛综合征患者记忆B细胞、CD56 bright NK细胞和肥大细胞显著下调(P<0.05),且与上述3个生物标志物显著正相关(P<0.05)。④富集分析结果提示,纤维肌痛综合征的富集途径包括9条,主要与嗅觉传导、神经活性配体-受体相互作用及感染等通路密切相关。⑤上述结果显示,纤维肌痛综合征的发生发展与多基因参与、免疫调节异常及多个通路失调有关,但这些基因与免疫细胞之间的相互作用,以及它们与各通路之间的关系尚需进一步研究。 展开更多
关键词 纤维肌痛综合征 生物信息学 机器学习 免疫浸润 加权基因共表达网络分析 套索回归 支持向量机递归特征消除算法 单样本基因集富集分析 基因集富集分析
下载PDF
人脸特征选择中的SVM泛化误差估计 被引量:3
15
作者 李伟红 龚卫国 +1 位作者 杨利平 辜小花 《光学精密工程》 EI CAS CSCD 北大核心 2008年第8期1452-1458,共7页
为了研究在人脸特征选择中用支持向量机(SVM)泛化误差界作特征选择判据的有效性问题,结合过滤(Filter)和封装(Wrapper)模型构造了人脸特征选择及识别的新框架,将小波变换(WT)和核主元分析(KPCA)作为Filter模型,最小化SVM的VC维(VC)留一... 为了研究在人脸特征选择中用支持向量机(SVM)泛化误差界作特征选择判据的有效性问题,结合过滤(Filter)和封装(Wrapper)模型构造了人脸特征选择及识别的新框架,将小波变换(WT)和核主元分析(KPCA)作为Filter模型,最小化SVM的VC维(VC)留一法(LOO)误差界及支持向量span误差界作为Wrapper模型的特征选择判据;通过递归特征排除法(RFE)在UMIST人脸图像库上进行人脸特征选择及识别实验。实验结果表明:判据为VC维的LOO误差界和支持向量span误差界时,特征维数可以分别降低到80和70,而分类识别率仍然能达到94%以上,表明本文所提出的特征选择判据和特征搜索策略是解决人脸特征选择问题的一种有效方法。 展开更多
关键词 svm泛化误差界 人脸特征选择 Filter模型 Wrapper模型 递归特征排除法
下载PDF
基于工况识别的PHEV能量管理策略
16
作者 张代庆 牛礼民 +1 位作者 汪恒 张义奇 《西华大学学报(自然科学版)》 CAS 2024年第3期54-63,共10页
为提升并联式混合动力汽车(parallel hybrid electric vehicle,PHEV)的燃油经济性,针对等效燃油消耗最小控制策略(equivalent fuel consumption minimum strategy,ECMS)在不同工况下适应性差的问题,以优化整车等效燃油消耗量为目标,设... 为提升并联式混合动力汽车(parallel hybrid electric vehicle,PHEV)的燃油经济性,针对等效燃油消耗最小控制策略(equivalent fuel consumption minimum strategy,ECMS)在不同工况下适应性差的问题,以优化整车等效燃油消耗量为目标,设计基于工况识别算法的变等效因子ECMS能量管理策略。选取3类典型工况建立支持向量机分类模型,通过递归特征消除法对样本特征进行选择,采用鲸鱼算法对支持向量机进行参数优化,使用模拟退火算法分别对3类工况的ECMS等效因子进行离线全局最优求解,并分别存储于等效因子库中,通过训练好的支持向量机分类器对目标优化工况进行工况识别,不同类型的工况片段采用不同的等效因子进行转矩分配。仿真结果显示:相比于逻辑门限能量管理策略,基于工况识别算法的变等效因子ECMS能量管理策略的电池荷电状态(state of charge,SOC)变化量减少8.67%,节油率为13.11%;相比于优化前的ECMS策略电池SOC变化量减少3.47%,节油率约为6.63%。本文提出的基于工况识别算法的变等效因子ECMS能量管理策略可以有效地减少燃油消耗量,提升PHEV的整车经济性。 展开更多
关键词 并联混合动力汽车 能量管理策略 工况识别 鲸鱼优化算法 支持向量机 递归特征消除 等效燃油消耗最小
下载PDF
改进CKSAAP结合RFE算法预测蛋白质棕榈酰化位点
17
作者 汤亚东 谢鹭 陈兰明 《计算机工程与应用》 CSCD 北大核心 2019年第5期143-148,共6页
蛋白质棕榈酰化是一种可逆的蛋白质翻译后修饰,在蛋白质稳定性和亚细胞定位等方面发挥重要作用。构建了一种预测蛋白质棕榈酰化位点的新模型(PSSM-CKSAAP-RFE)。采用蕴含进化信息的k-spaced氨基酸对组分方法表征蛋白质序列,通过递归特... 蛋白质棕榈酰化是一种可逆的蛋白质翻译后修饰,在蛋白质稳定性和亚细胞定位等方面发挥重要作用。构建了一种预测蛋白质棕榈酰化位点的新模型(PSSM-CKSAAP-RFE)。采用蕴含进化信息的k-spaced氨基酸对组分方法表征蛋白质序列,通过递归特征消除法进行特征选择;基于上述特征训练支持向量机分类器,并采用夹克刀交叉验证法测试模型性能。研究结果显示,训练集和独立测试集的预测准确率、马修斯相关系数、特异性、敏感性和受试者工作特征曲线下面积分别为98.44%、0.94、98.95%、95.65%和0.990,以及98.41%、0.93、99.39%、92.31%和0.994,优于文献中报道的相关方法,为蛋白质棕榈酰化位点的预测提供了一种新模型。 展开更多
关键词 蛋白质棕榈酰化位点 k-spaced氨基酸对组分 位置特异性得分矩阵 支持向量机 递归特征消除
下载PDF
耦合递归特征消除与二维CNN的滑坡敏感性评价 被引量:2
18
作者 张沛 李英冰 +1 位作者 张镇平 胡露太 《测绘通报》 CSCD 北大核心 2023年第12期88-93,共6页
针对传统滑坡敏感性评价方法仅考虑滑坡点本身的影响因子信息,而忽略周围空间信息的问题,本文提出了一种耦合递归特征消除与二维卷积神经网络相结合的方法。首先通过递归特征消除对滑坡影响因子进行排序与筛选;其次裁取二维特征因子集... 针对传统滑坡敏感性评价方法仅考虑滑坡点本身的影响因子信息,而忽略周围空间信息的问题,本文提出了一种耦合递归特征消除与二维卷积神经网络相结合的方法。首先通过递归特征消除对滑坡影响因子进行排序与筛选;其次裁取二维特征因子集输入添加了L2正则化、Dropout等优化方法的二维CNN中,顾及滑坡周围的空间信息,在保证模型精度与泛化能力的基础上预测滑坡敏感性;然后以九寨沟地区为试验区,选取高程、岩性等14个相关因子作为滑坡影响因素,预测试验区的滑坡发生概率并绘制滑坡敏感性图;最后使用Logistic模型和带有3种不同核函数(线性核函数、径向基核函数、Sigmoid核函数)的SVM模型进行对比验证。结果表明,本文方法具有最高的准确度与AUC,且具有效性与可靠性。 展开更多
关键词 滑坡敏感性 递归特征消除 二维卷积神经网络 L2正则化 支持向量机
下载PDF
基于机器学习算法筛选鼻咽癌诊断基因标志物的研究 被引量:1
19
作者 王艺任 刘艾艾 +2 位作者 詹翔 罗颜 周平 《实用临床医药杂志》 CAS 2023年第7期6-11,共6页
目的基于最小绝对收缩和选择算子(LASSO)算法与支持向量机递归特征消除(SVM-RFE)算法筛选用于鼻咽癌(NPC)诊断的特征基因标志物。方法从GEO数据库下载基因表达微阵列数据集GSE53819、GSE13597作为训练集,从GTEx数据库、ICGC数据库分别... 目的基于最小绝对收缩和选择算子(LASSO)算法与支持向量机递归特征消除(SVM-RFE)算法筛选用于鼻咽癌(NPC)诊断的特征基因标志物。方法从GEO数据库下载基因表达微阵列数据集GSE53819、GSE13597作为训练集,从GTEx数据库、ICGC数据库分别下载转录组测序数据集GTEx-NPC、ICGC-NPC作为训练集、验证集。通过基因表达差异分析筛选NPC相关差异表达基因(DEGs),再通过LASSO算法和SVM-RFE算法分别筛选3个训练集中的NPC诊断特征基因。结合外部验证集,通过受试者工作特征(ROC)曲线的曲线下面积(AUC)评估特征基因对NPC的诊断效能。结果本研究共筛选出582个NPC相关DEGs,包括156个高表达DEGs和426个低表达DEGs;基于LASSO算法与SVM-RFE算法,GSE53819、GSE13597、GTEx-NPC数据集均筛选出3个关键诊断特征基因HOXA10、AFF3、SHISA3,且GTEx-NPC数据集另有1个特征基因PLAU;ROC曲线分析结果显示,特征基因HOXA10、AFF3、SHISA3、PLAU在各数据集中诊断NPC的AUC均大于0.7,具有良好的诊断效能。结论基于LASSO算法和SVM-RFE算法可筛选出4个潜在的NPC诊断特征基因标志物,且外部验证结果显示这些基因标志物在诊断NPC方面具有良好效能,这为NPC的早期诊断和相关基因的分子机制研究提供了有价值的参考。 展开更多
关键词 鼻咽癌 基因组学 机器学习 生物信息学 支持向量机递归特征消除 套索回归
下载PDF
基于SVM-RFE的钓鱼网页检测方法研究 被引量:3
20
作者 王婷 彭勇 +2 位作者 戴忠华 伊胜伟 韩兰胜 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第S2期143-146,共4页
针对现有钓鱼网页检测方法存在的不足,基于后向选择算法,在信息获取、特征提取、分类器训练及检测疑似网络钓鱼网页等过程进行了优化.根据特征之间的相互关系划分等级空间,借助支持向量机回归特征消除的思想,提出了基于支持向量机的回... 针对现有钓鱼网页检测方法存在的不足,基于后向选择算法,在信息获取、特征提取、分类器训练及检测疑似网络钓鱼网页等过程进行了优化.根据特征之间的相互关系划分等级空间,借助支持向量机回归特征消除的思想,提出了基于支持向量机的回归特征消除(SVM-RFE)对钓鱼网页进行检测的思路,设计出一种改进的钓鱼网页检测方法.最后对比不同特征维度在漏报率、误报率、识别率方面的差异,分析检测的有效性.实验结果表明:实际应用中可通过该方法准确有效地选定最优特征. 展开更多
关键词 网络钓鱼检测 支持向量机 回归特征消除 特征选择 特征向量 钓鱼网页
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部