A new incremental support vector machine (SVM) algorithm is proposed which is based on multiple kernel learning. Through introducing multiple kernel learning into the SVM incremental learning, large scale data set l...A new incremental support vector machine (SVM) algorithm is proposed which is based on multiple kernel learning. Through introducing multiple kernel learning into the SVM incremental learning, large scale data set learning problem can be solved effectively. Furthermore, different punishments are adopted in allusion to the training subset and the acquired support vectors, which may help to improve the performance of SVM. Simulation results indicate that the proposed algorithm can not only solve the model selection problem in SVM incremental learning, but also improve the classification or prediction precision.展开更多
In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot al...In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot always provide sufficiently reliable solutions.Nevertheless,Machine Learning(ML)techniques,which offer advanced regression tools to address complicated engineering issues,have been developed and widely explored.This study investigates the selected ML techniques to evaluate their suitability for application in the hot deformation behavior of metallic materials.The ML-based regression methods of Artificial Neural Networks(ANNs),Support Vector Machine(SVM),Decision Tree Regression(DTR),and Gaussian Process Regression(GPR)are applied to mathematically describe hot flow stress curve datasets acquired experimentally for a medium-carbon steel.Although the GPR method has not been used for such a regression task before,the results showed that its performance is the most favorable and practically unrivaled;neither the ANN method nor the other studied ML techniques provide such precise results of the solved regression analysis.展开更多
The support vector machine(SVM)is a classical machine learning method.Both the hinge loss and least absolute shrinkage and selection operator(LASSO)penalty are usually used in traditional SVMs.However,the hinge loss i...The support vector machine(SVM)is a classical machine learning method.Both the hinge loss and least absolute shrinkage and selection operator(LASSO)penalty are usually used in traditional SVMs.However,the hinge loss is not differentiable,and the LASSO penalty does not have the Oracle property.In this paper,the huberized loss is combined with non-convex penalties to obtain a model that has the advantages of both the computational simplicity and the Oracle property,contributing to higher accuracy than traditional SVMs.It is experimentally demonstrated that the two non-convex huberized-SVM methods,smoothly clipped absolute deviation huberized-SVM(SCAD-HSVM)and minimax concave penalty huberized-SVM(MCP-HSVM),outperform the traditional SVM method in terms of the prediction accuracy and classifier performance.They are also superior in terms of variable selection,especially when there is a high linear correlation between the variables.When they are applied to the prediction of listed companies,the variables that can affect and predict financial distress are accurately filtered out.Among all the indicators,the indicators per share have the greatest influence while those of solvency have the weakest influence.Listed companies can assess the financial situation with the indicators screened by our algorithm and make an early warning of their possible financial distress in advance with higher precision.展开更多
Due to the spectral and spatial properties of pervious and impervious surfaces,image classification and information extraction in detailed,small-scale mapping of urban surface materials is quite difficult and complex....Due to the spectral and spatial properties of pervious and impervious surfaces,image classification and information extraction in detailed,small-scale mapping of urban surface materials is quite difficult and complex.Emerging methods and innovations in image classification have centred on object-based classification techniques and various segmentation techniques,which are fundamental to this approach.Consequently,the purpose of this study is to determine which classification method is most suitable for extracting linear features in terms of techniques and performance by comparing two classification methods,pixel-based approach and object-based approach,using WorldView-2 satellite imagery to specifically highlight linear features such as roads,building edges,and road dividers.Two applied algorithms,including support vector machines(SVM)and ruled-based,were evaluated using two distinct software.A comparison of the results reveals that the object-based classification has a higher overall resolution than the pixel-based classification.The output of rule-based classificationwas satisfactory,with an overall accuracy of 88.6%(ENVI)and 92.2%(e-Cognition).The SVM classification result contained misclassified impervious surfaces and other urban features,as well as mixed objects.This classification achieved an overall accuracy of 75.1%.Nonetheless,this study provides an excellent overview for understanding the differences in their performances on the same data,as well as a comparison of the software employed.展开更多
Lithofacies identification is a crucial work in reservoir characterization and modeling.The vast inter-well area can be supplemented by facies identification of seismic data.However,the relationship between lithofacie...Lithofacies identification is a crucial work in reservoir characterization and modeling.The vast inter-well area can be supplemented by facies identification of seismic data.However,the relationship between lithofacies and seismic information that is affected by many factors is complicated.Machine learning has received extensive attention in recent years,among which support vector machine(SVM) is a potential method for lithofacies classification.Lithofacies classification involves identifying various types of lithofacies and is generally a nonlinear problem,which needs to be solved by means of the kernel function.Multi-kernel learning SVM is one of the main tools for solving the nonlinear problem about multi-classification.However,it is very difficult to determine the kernel function and the parameters,which is restricted by human factors.Besides,its computational efficiency is low.A lithofacies classification method based on local deep multi-kernel learning support vector machine(LDMKL-SVM) that can consider low-dimensional global features and high-dimensional local features is developed.The method can automatically learn parameters of kernel function and SVM to build a relationship between lithofacies and seismic elastic information.The calculation speed will be expedited at no cost with respect to discriminant accuracy for multi-class lithofacies identification.Both the model data test results and the field data application results certify advantages of the method.This contribution offers an effective method for lithofacies recognition and reservoir prediction by using SVM.展开更多
In this paper, we present a novel Support Vector Machine active learning algorithm for effective 3D model retrieval using the concept of relevance feedback. The proposed method learns from the most informative objects...In this paper, we present a novel Support Vector Machine active learning algorithm for effective 3D model retrieval using the concept of relevance feedback. The proposed method learns from the most informative objects which are marked by the user, and then creates a boundary separating the relevant models from irrelevant ones. What it needs is only a small number of 3D models labelled by the user. It can grasp the user's semantic knowledge rapidly and accurately. Experimental results showed that the proposed algorithm significantly improves the retrieval effectiveness. Compared with four state-of-the-art query refinement schemes for 3D model retrieval, it provides superior retrieval performance after no more than two rounds of relevance feedback.展开更多
Turbopump condition monitoring is a significant approach to ensure the safety of liquid rocket engine (LRE).Because of lack of fault samples,a monitoring system cannot be trained on all possible condition patterns.T...Turbopump condition monitoring is a significant approach to ensure the safety of liquid rocket engine (LRE).Because of lack of fault samples,a monitoring system cannot be trained on all possible condition patterns.Thus it is important to differentiate abnormal or unknown patterns from normal pattern with novelty detection methods.One-class support vector machine (OCSVM) that has been commonly used for novelty detection cannot deal well with large scale samples.In order to model the normal pattern of the turbopump with OCSVM and so as to monitor the condition of the turbopump,a monitoring method that integrates OCSVM with incremental clustering is presented.In this method,the incremental clustering is used for sample reduction by extracting representative vectors from a large training set.The representative vectors are supposed to distribute uniformly in the object region and fulfill the region.And training OCSVM on these representative vectors yields a novelty detector.By applying this method to the analysis of the turbopump's historical test data,it shows that the incremental clustering algorithm can extract 91 representative points from more than 36 000 training vectors,and the OCSVM detector trained on these 91 representative points can recognize spikes in vibration signals caused by different abnormal events such as vane shedding,rub-impact and sensor faults.This monitoring method does not need fault samples during training as classical recognition methods.The method resolves the learning problem of large samples and is an alternative method for condition monitoring of the LRE turbopump.展开更多
It is a challenging topic to develop an efficient algorithm for large scale classification problems in many applications of machine learning. In this paper, a hierarchical clustering and fixed- layer local learning (...It is a challenging topic to develop an efficient algorithm for large scale classification problems in many applications of machine learning. In this paper, a hierarchical clustering and fixed- layer local learning (HCFLL) based support vector machine(SVM) algorithm is proposed to deal with this problem. Firstly, HCFLL hierarchically dusters a given dataset into a modified clustering feature tree based on the ideas of unsupervised clustering and supervised clustering. Then it locally trains SVM on each labeled subtree at a fixed-layer of the tree. The experimental results show that compared with the existing popular algorithms such as core vector machine and decision.tree support vector machine, HCFLL can significantly improve the training and testing speeds with comparable testing accuracy.展开更多
Path loss prediction models are vital for accurate signal propagation in wireless channels. Empirical and deterministic models used in path loss predictions have not produced optimal results. In this paper, we introdu...Path loss prediction models are vital for accurate signal propagation in wireless channels. Empirical and deterministic models used in path loss predictions have not produced optimal results. In this paper, we introduced machine learning algorithms to path loss predictions because it offers a flexible network architecture and extensive data can be used. We introduced support vector regression (SVR) and radial basis function (RBF) models to path loss predictions in the investigated environments. The SVR model was able to process several input parameters without introducing complexity to the network architecture. The RBF on its part provides a good function approximation. Hyperparameter tuning of the machine learning models was carried out in order to achieve optimal results. The performances of the SVR and RBF models were compared and result validated using the root-mean squared error (RMSE). The two machine learning algorithms were also compared with the Cost-231, SUI, Egli, Freespace, Cost-231 W-I models. The analytical models overpredicted path loss. Overall, the machine learning models predicted path loss with greater accuracy than the empirical models. The SVR model performed best across all the indices with RMSE values of 1.378 dB, 1.4523 dB, 2.1568 dB in rural, suburban and urban settings respectively and should therefore be adopted for signal propagation in the investigated environments and beyond.展开更多
The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important prac...The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important practical significance.In this work,machine learning(ML)methods were utilized to accelerate the search for shape memory alloys with targeted properties(phase transition temperature).A group of component data was selected to design shape memory alloys using reverse design method from numerous unexplored data.Component modeling and feature modeling were used to predict the phase transition temperature of the shape memory alloys.The experimental results of the shape memory alloys were obtained to verify the effectiveness of the support vector regression(SVR)model.The results show that the machine learning model can obtain target materials more efficiently and pertinently,and realize the accurate and rapid design of shape memory alloys with specific target phase transition temperature.On this basis,the relationship between phase transition temperature and material descriptors is analyzed,and it is proved that the key factors affecting the phase transition temperature of shape memory alloys are based on the strength of the bond energy between atoms.This work provides new ideas for the controllable design and performance optimization of Cu-based shape memory alloys.展开更多
The relationship among Mercer kernel, reproducing kernel and positive definite kernel in support vector machine (SVM) is proved and their roles in SVM are discussed. The quadratic form of the kernel matrix is used t...The relationship among Mercer kernel, reproducing kernel and positive definite kernel in support vector machine (SVM) is proved and their roles in SVM are discussed. The quadratic form of the kernel matrix is used to confirm the positive definiteness and their construction. Based on the Bochner theorem, some translation invariant kernels are checked in their Fourier domain. Some rotation invariant radial kernels are inspected according to the Schoenberg theorem. Finally, the construction of discrete scaling and wavelet kernels, the kernel selection and the kernel parameter learning are discussed.展开更多
An inverse learning control scheme using the support vector machine (SVM) for regression was proposed. The inverse learning approach is originally researched in the neural networks. Compared with neural networks, SVMs...An inverse learning control scheme using the support vector machine (SVM) for regression was proposed. The inverse learning approach is originally researched in the neural networks. Compared with neural networks, SVMs overcome the problems of local minimum and curse of dimensionality. Additionally, the good generalization performance of SVMs increases the robustness of control system. The method of designing SVM inverse learning controller was presented. The proposed method is demonstrated on tracking problems and the performance is satisfactory.展开更多
A learning controller of nonhonolomic robot in real-time based on support vector machine(SVM)is presented.The controller includes two parts:one is kinematic controller based on nonlinear law,and the other is dynamic c...A learning controller of nonhonolomic robot in real-time based on support vector machine(SVM)is presented.The controller includes two parts:one is kinematic controller based on nonlinear law,and the other is dynamic controller based on SVM.The kinematic controller is aimed to provide desired velocity which can make the steering system stable.The dynamic controller is aimed to transform the desired velocity to control torque.The parameters of the dynamic system of the robot are estimated through SVM learning algorithm according to the training data of sliding windows in real time.The proposed controller can adapt to the changes in the robot model and uncertainties in the environment.Compared with artificial neural network(ANN)controller,SVM controller can converge to the reference trajectory more quickly and the tracking error is smaller.The simulation results verify the effectiveness of the method proposed.展开更多
In recent years,support vector machine learning methods have gradually become the main research direction of machine learning.The support vector machine has a small structural risk compared with the traditional learni...In recent years,support vector machine learning methods have gradually become the main research direction of machine learning.The support vector machine has a small structural risk compared with the traditional learning method,which can make the training error and the classifier capacity reach a relatively balanced state.Secondly,it also has the advantages of strong adaptability and strong promotion ability and has been widely praised by the industry.The following discussion focuses on the application of support vector machine in machine learning.展开更多
Classical machine learning, which is at the intersection of artificial intelligence and statistics, investigates and formulates algorithms which can be used to discover patterns in the given data and also make some fo...Classical machine learning, which is at the intersection of artificial intelligence and statistics, investigates and formulates algorithms which can be used to discover patterns in the given data and also make some forecasts based on the given data. Classical machine learning has its quantum part, which is known as quantum machine learning (QML). QML, which is a field of quantum computing, uses some of the quantum mechanical principles and concepts which include superposition, entanglement and quantum adiabatic theorem to assess the data and make some forecasts based on the data. At the present moment, research in QML has taken two main approaches. The first approach involves implementing the computationally expensive subroutines of classical machine learning algorithms on a quantum computer. The second approach concerns using classical machine learning algorithms on a quantum information, to speed up performance of the algorithms. The work presented in this manuscript proposes a quantum support vector algorithm that can be used to forecast solar irradiation. The novelty of this work is in using quantum mechanical principles for application in machine learning. Python programming language was used to simulate the performance of the proposed algorithm on a classical computer. Simulation results that were obtained show the usefulness of this algorithm for predicting solar irradiation.展开更多
Machine learning is currently one of the research hotspots in the field of landslide prediction.To clarify and evaluate the differences in characteristics and prediction effects of different machine learning models,Co...Machine learning is currently one of the research hotspots in the field of landslide prediction.To clarify and evaluate the differences in characteristics and prediction effects of different machine learning models,Conghua District,which is the most prone to landslide disasters in Guangzhou,was selected for landslide susceptibility evaluation.The evaluation factors were selected by using correlation analysis and variance expansion factor method.Applying four machine learning methods namely Logistic Regression(LR),Random Forest(RF),Support Vector Machines(SVM),and Extreme Gradient Boosting(XGB),landslide models were constructed.Comparative analysis and evaluation of the model were conducted through statistical indices and receiver operating characteristic(ROC)curves.The results showed that LR,RF,SVM,and XGB models have good predictive performance for landslide susceptibility,with the area under curve(AUC)values of 0.752,0.965,0.996,and 0.998,respectively.XGB model had the highest predictive ability,followed by RF model,SVM model,and LR model.The frequency ratio(FR)accuracy of LR,RF,SVM,and XGB models was 0.775,0.842,0.759,and 0.822,respectively.RF and XGB models were superior to LR and SVM models,indicating that the integrated algorithm has better predictive ability than a single classification algorithm in regional landslide classification problems.展开更多
The application of carbon dioxide(CO_(2)) in enhanced oil recovery(EOR) has increased significantly, in which CO_(2) solubility in oil is a key parameter in predicting CO_(2) flooding performance. Hydrocarbons are the...The application of carbon dioxide(CO_(2)) in enhanced oil recovery(EOR) has increased significantly, in which CO_(2) solubility in oil is a key parameter in predicting CO_(2) flooding performance. Hydrocarbons are the major constituents of oil, thus the focus of this work lies in investigating the solubility of CO_(2) in hydrocarbons. However, current experimental measurements are time-consuming, and equations of state can be computationally complex. To address these challenges, we developed an artificial intelligence-based model to predict the solubility of CO_(2) in hydrocarbons under varying conditions of temperature, pressure, molecular weight, and density. Using experimental data from previous studies,we trained and predicted the solubility using four machine learning models: support vector regression(SVR), extreme gradient boosting(XGBoost), random forest(RF), and multilayer perceptron(MLP).Among four models, the XGBoost model has the best predictive performance, with an R^(2) of 0.9838.Additionally, sensitivity analysis and evaluation of the relative impacts of each input parameter indicate that the prediction of CO_(2) solubility in hydrocarbons is most sensitive to pressure. Furthermore, our trained model was compared with existing models, demonstrating higher accuracy and applicability of our model. The developed machine learning-based model provides a more efficient and accurate approach for predicting CO_(2) solubility in hydrocarbons, which may contribute to the advancement of CO_(2)-related applications in the petroleum industry.展开更多
BACKGROUND Research has found that the amygdala plays a significant role in underlying pathology of major depressive disorder(MDD).However,few studies have explored machine learning-assisted diagnostic biomarkers base...BACKGROUND Research has found that the amygdala plays a significant role in underlying pathology of major depressive disorder(MDD).However,few studies have explored machine learning-assisted diagnostic biomarkers based on amygdala functional connectivity(FC).AIM To investigate the analysis of neuroimaging biomarkers as a streamlined approach for the diagnosis of MDD in adolescents.METHODS Forty-four adolescents diagnosed with MDD and 43 healthy controls were enrolled in the study.Using resting-state functional magnetic resonance imaging,the FC was compared between the adolescents with MDD and the healthy controls,with the bilateral amygdala serving as the seed point,followed by statistical analysis of the results.The support vector machine(SVM)method was then applied to classify functional connections in various brain regions and to evaluate the neurophysiological characteristics associated with MDD.RESULTS Compared to the controls and using the bilateral amygdala as the region of interest,patients with MDD showed significantly lower FC values in the left inferior temporal gyrus,bilateral calcarine,right lingual gyrus,and left superior occipital gyrus.However,there was an increase in the FC value in Vermis-10.The SVM analysis revealed that the reduction in the FC value in the right lingual gyrus could effectively differentiate patients with MDD from healthy controls,achieving a diagnostic accuracy of 83.91%,sensitivity of 79.55%,specificity of 88.37%,and an area under the curve of 67.65%.CONCLUSION The results showed that an abnormal FC value in the right lingual gyrus was effective as a neuroimaging biomarker to distinguish patients with MDD from healthy controls.展开更多
The site effect is a crucial factor when analyzing seismic risk and establishing ground motion attenuation relationships. A number of countries have introduced building site classification into earthquake-resistant de...The site effect is a crucial factor when analyzing seismic risk and establishing ground motion attenuation relationships. A number of countries have introduced building site classification into earthquake-resistant design codes to account for local site effects on ground motion. However, most site classification indicators rely on drilling data, which is often expensive and requires considerable manpower. As a result, the less detailed drilling data may lead to an undetermined site category of numerous stations. In this study, a Support Vector Machine(SVM) algorithm-based site classification model was trained to address this issue using strong ground motion data and site data from KiK-net and K-net. The classification model used the average HVSR curve of the labeled site and the combined inputs, including frequency, peak, “prominence”, and “sharpness” extracted from the curve. The SVM classification model has an accuracy of 76.12% on the test set, with recall rates of 82.69%, 75%, and 63.64%for sites Ⅰ, Ⅱ, and Ⅲ, respectively. The precision rates are 75.44%, 73.77%, and 87.50%, respectively, with F1scores of 78.90%, 74.38%, and 73.68%. For sites without significant peaks in the HVSR curve, the HVSR curve value was used as the characteristic parameter(input), and the SVM-based site classification model was also trained. The accuracy of class Ⅰ and Ⅱ is 75.86%. The results of this study show higher recall and accuracy rates than those obtained using the spectral ratio curve matching method and GRNN method, indicating a better classification performance. Finally, the generalization ability of the model was verified using some basic stations in Xinjiang deployed by the “National Seismic Intensity Rapid Reporting and Early Warning Project”. The SVMbased site classification model that employs strong motion data can provide more reliable classification results for sites without detailed borehole information, and the site classification results can serve as a reference for probing ground motion attenuation relationships, ground motion simulation, and seismic fortification considering the site effect.展开更多
基金supported by the National Natural Science Key Foundation of China(69974021)
文摘A new incremental support vector machine (SVM) algorithm is proposed which is based on multiple kernel learning. Through introducing multiple kernel learning into the SVM incremental learning, large scale data set learning problem can be solved effectively. Furthermore, different punishments are adopted in allusion to the training subset and the acquired support vectors, which may help to improve the performance of SVM. Simulation results indicate that the proposed algorithm can not only solve the model selection problem in SVM incremental learning, but also improve the classification or prediction precision.
基金supported by the SP2024/089 Project by the Faculty of Materials Science and Technology,VˇSB-Technical University of Ostrava.
文摘In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot always provide sufficiently reliable solutions.Nevertheless,Machine Learning(ML)techniques,which offer advanced regression tools to address complicated engineering issues,have been developed and widely explored.This study investigates the selected ML techniques to evaluate their suitability for application in the hot deformation behavior of metallic materials.The ML-based regression methods of Artificial Neural Networks(ANNs),Support Vector Machine(SVM),Decision Tree Regression(DTR),and Gaussian Process Regression(GPR)are applied to mathematically describe hot flow stress curve datasets acquired experimentally for a medium-carbon steel.Although the GPR method has not been used for such a regression task before,the results showed that its performance is the most favorable and practically unrivaled;neither the ANN method nor the other studied ML techniques provide such precise results of the solved regression analysis.
文摘The support vector machine(SVM)is a classical machine learning method.Both the hinge loss and least absolute shrinkage and selection operator(LASSO)penalty are usually used in traditional SVMs.However,the hinge loss is not differentiable,and the LASSO penalty does not have the Oracle property.In this paper,the huberized loss is combined with non-convex penalties to obtain a model that has the advantages of both the computational simplicity and the Oracle property,contributing to higher accuracy than traditional SVMs.It is experimentally demonstrated that the two non-convex huberized-SVM methods,smoothly clipped absolute deviation huberized-SVM(SCAD-HSVM)and minimax concave penalty huberized-SVM(MCP-HSVM),outperform the traditional SVM method in terms of the prediction accuracy and classifier performance.They are also superior in terms of variable selection,especially when there is a high linear correlation between the variables.When they are applied to the prediction of listed companies,the variables that can affect and predict financial distress are accurately filtered out.Among all the indicators,the indicators per share have the greatest influence while those of solvency have the weakest influence.Listed companies can assess the financial situation with the indicators screened by our algorithm and make an early warning of their possible financial distress in advance with higher precision.
文摘Due to the spectral and spatial properties of pervious and impervious surfaces,image classification and information extraction in detailed,small-scale mapping of urban surface materials is quite difficult and complex.Emerging methods and innovations in image classification have centred on object-based classification techniques and various segmentation techniques,which are fundamental to this approach.Consequently,the purpose of this study is to determine which classification method is most suitable for extracting linear features in terms of techniques and performance by comparing two classification methods,pixel-based approach and object-based approach,using WorldView-2 satellite imagery to specifically highlight linear features such as roads,building edges,and road dividers.Two applied algorithms,including support vector machines(SVM)and ruled-based,were evaluated using two distinct software.A comparison of the results reveals that the object-based classification has a higher overall resolution than the pixel-based classification.The output of rule-based classificationwas satisfactory,with an overall accuracy of 88.6%(ENVI)and 92.2%(e-Cognition).The SVM classification result contained misclassified impervious surfaces and other urban features,as well as mixed objects.This classification achieved an overall accuracy of 75.1%.Nonetheless,this study provides an excellent overview for understanding the differences in their performances on the same data,as well as a comparison of the software employed.
基金financially supported by the National Natural Science Foundation of China (41774129, 41904116)the Foundation Research Project of Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation (MTy2019-20)。
文摘Lithofacies identification is a crucial work in reservoir characterization and modeling.The vast inter-well area can be supplemented by facies identification of seismic data.However,the relationship between lithofacies and seismic information that is affected by many factors is complicated.Machine learning has received extensive attention in recent years,among which support vector machine(SVM) is a potential method for lithofacies classification.Lithofacies classification involves identifying various types of lithofacies and is generally a nonlinear problem,which needs to be solved by means of the kernel function.Multi-kernel learning SVM is one of the main tools for solving the nonlinear problem about multi-classification.However,it is very difficult to determine the kernel function and the parameters,which is restricted by human factors.Besides,its computational efficiency is low.A lithofacies classification method based on local deep multi-kernel learning support vector machine(LDMKL-SVM) that can consider low-dimensional global features and high-dimensional local features is developed.The method can automatically learn parameters of kernel function and SVM to build a relationship between lithofacies and seismic elastic information.The calculation speed will be expedited at no cost with respect to discriminant accuracy for multi-class lithofacies identification.Both the model data test results and the field data application results certify advantages of the method.This contribution offers an effective method for lithofacies recognition and reservoir prediction by using SVM.
基金the National Basic Research Program (973) of China (No. 2004CB719401)the National Research Foundation for the Doctoral Program of Higher Education of China (No.20060003060)
文摘In this paper, we present a novel Support Vector Machine active learning algorithm for effective 3D model retrieval using the concept of relevance feedback. The proposed method learns from the most informative objects which are marked by the user, and then creates a boundary separating the relevant models from irrelevant ones. What it needs is only a small number of 3D models labelled by the user. It can grasp the user's semantic knowledge rapidly and accurately. Experimental results showed that the proposed algorithm significantly improves the retrieval effectiveness. Compared with four state-of-the-art query refinement schemes for 3D model retrieval, it provides superior retrieval performance after no more than two rounds of relevance feedback.
基金supported by National Natural Science Foundation of China (Grant No. 50675219)Hu’nan Provincial Science Committee Excellent Youth Foundation of China (Grant No. 08JJ1008)
文摘Turbopump condition monitoring is a significant approach to ensure the safety of liquid rocket engine (LRE).Because of lack of fault samples,a monitoring system cannot be trained on all possible condition patterns.Thus it is important to differentiate abnormal or unknown patterns from normal pattern with novelty detection methods.One-class support vector machine (OCSVM) that has been commonly used for novelty detection cannot deal well with large scale samples.In order to model the normal pattern of the turbopump with OCSVM and so as to monitor the condition of the turbopump,a monitoring method that integrates OCSVM with incremental clustering is presented.In this method,the incremental clustering is used for sample reduction by extracting representative vectors from a large training set.The representative vectors are supposed to distribute uniformly in the object region and fulfill the region.And training OCSVM on these representative vectors yields a novelty detector.By applying this method to the analysis of the turbopump's historical test data,it shows that the incremental clustering algorithm can extract 91 representative points from more than 36 000 training vectors,and the OCSVM detector trained on these 91 representative points can recognize spikes in vibration signals caused by different abnormal events such as vane shedding,rub-impact and sensor faults.This monitoring method does not need fault samples during training as classical recognition methods.The method resolves the learning problem of large samples and is an alternative method for condition monitoring of the LRE turbopump.
基金National Natural Science Foundation of China ( No. 61070033 )Fundamental Research Funds for the Central Universities,China( No. 2012ZM0061)
文摘It is a challenging topic to develop an efficient algorithm for large scale classification problems in many applications of machine learning. In this paper, a hierarchical clustering and fixed- layer local learning (HCFLL) based support vector machine(SVM) algorithm is proposed to deal with this problem. Firstly, HCFLL hierarchically dusters a given dataset into a modified clustering feature tree based on the ideas of unsupervised clustering and supervised clustering. Then it locally trains SVM on each labeled subtree at a fixed-layer of the tree. The experimental results show that compared with the existing popular algorithms such as core vector machine and decision.tree support vector machine, HCFLL can significantly improve the training and testing speeds with comparable testing accuracy.
文摘Path loss prediction models are vital for accurate signal propagation in wireless channels. Empirical and deterministic models used in path loss predictions have not produced optimal results. In this paper, we introduced machine learning algorithms to path loss predictions because it offers a flexible network architecture and extensive data can be used. We introduced support vector regression (SVR) and radial basis function (RBF) models to path loss predictions in the investigated environments. The SVR model was able to process several input parameters without introducing complexity to the network architecture. The RBF on its part provides a good function approximation. Hyperparameter tuning of the machine learning models was carried out in order to achieve optimal results. The performances of the SVR and RBF models were compared and result validated using the root-mean squared error (RMSE). The two machine learning algorithms were also compared with the Cost-231, SUI, Egli, Freespace, Cost-231 W-I models. The analytical models overpredicted path loss. Overall, the machine learning models predicted path loss with greater accuracy than the empirical models. The SVR model performed best across all the indices with RMSE values of 1.378 dB, 1.4523 dB, 2.1568 dB in rural, suburban and urban settings respectively and should therefore be adopted for signal propagation in the investigated environments and beyond.
基金financially supported by the National Natural Science Foundation of China(No.51974028)。
文摘The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important practical significance.In this work,machine learning(ML)methods were utilized to accelerate the search for shape memory alloys with targeted properties(phase transition temperature).A group of component data was selected to design shape memory alloys using reverse design method from numerous unexplored data.Component modeling and feature modeling were used to predict the phase transition temperature of the shape memory alloys.The experimental results of the shape memory alloys were obtained to verify the effectiveness of the support vector regression(SVR)model.The results show that the machine learning model can obtain target materials more efficiently and pertinently,and realize the accurate and rapid design of shape memory alloys with specific target phase transition temperature.On this basis,the relationship between phase transition temperature and material descriptors is analyzed,and it is proved that the key factors affecting the phase transition temperature of shape memory alloys are based on the strength of the bond energy between atoms.This work provides new ideas for the controllable design and performance optimization of Cu-based shape memory alloys.
基金Supported by the National Natural Science Foundation of China(60473035)~~
文摘The relationship among Mercer kernel, reproducing kernel and positive definite kernel in support vector machine (SVM) is proved and their roles in SVM are discussed. The quadratic form of the kernel matrix is used to confirm the positive definiteness and their construction. Based on the Bochner theorem, some translation invariant kernels are checked in their Fourier domain. Some rotation invariant radial kernels are inspected according to the Schoenberg theorem. Finally, the construction of discrete scaling and wavelet kernels, the kernel selection and the kernel parameter learning are discussed.
文摘An inverse learning control scheme using the support vector machine (SVM) for regression was proposed. The inverse learning approach is originally researched in the neural networks. Compared with neural networks, SVMs overcome the problems of local minimum and curse of dimensionality. Additionally, the good generalization performance of SVMs increases the robustness of control system. The method of designing SVM inverse learning controller was presented. The proposed method is demonstrated on tracking problems and the performance is satisfactory.
基金Project(60910005)supported by the National Natural Science Foundation of China
文摘A learning controller of nonhonolomic robot in real-time based on support vector machine(SVM)is presented.The controller includes two parts:one is kinematic controller based on nonlinear law,and the other is dynamic controller based on SVM.The kinematic controller is aimed to provide desired velocity which can make the steering system stable.The dynamic controller is aimed to transform the desired velocity to control torque.The parameters of the dynamic system of the robot are estimated through SVM learning algorithm according to the training data of sliding windows in real time.The proposed controller can adapt to the changes in the robot model and uncertainties in the environment.Compared with artificial neural network(ANN)controller,SVM controller can converge to the reference trajectory more quickly and the tracking error is smaller.The simulation results verify the effectiveness of the method proposed.
文摘In recent years,support vector machine learning methods have gradually become the main research direction of machine learning.The support vector machine has a small structural risk compared with the traditional learning method,which can make the training error and the classifier capacity reach a relatively balanced state.Secondly,it also has the advantages of strong adaptability and strong promotion ability and has been widely praised by the industry.The following discussion focuses on the application of support vector machine in machine learning.
文摘Classical machine learning, which is at the intersection of artificial intelligence and statistics, investigates and formulates algorithms which can be used to discover patterns in the given data and also make some forecasts based on the given data. Classical machine learning has its quantum part, which is known as quantum machine learning (QML). QML, which is a field of quantum computing, uses some of the quantum mechanical principles and concepts which include superposition, entanglement and quantum adiabatic theorem to assess the data and make some forecasts based on the data. At the present moment, research in QML has taken two main approaches. The first approach involves implementing the computationally expensive subroutines of classical machine learning algorithms on a quantum computer. The second approach concerns using classical machine learning algorithms on a quantum information, to speed up performance of the algorithms. The work presented in this manuscript proposes a quantum support vector algorithm that can be used to forecast solar irradiation. The novelty of this work is in using quantum mechanical principles for application in machine learning. Python programming language was used to simulate the performance of the proposed algorithm on a classical computer. Simulation results that were obtained show the usefulness of this algorithm for predicting solar irradiation.
基金supported by the projects of the China Geological Survey(DD20221729,DD20190291)Zhuhai Urban Geological Survey(including informatization)(MZCD–2201–008).
文摘Machine learning is currently one of the research hotspots in the field of landslide prediction.To clarify and evaluate the differences in characteristics and prediction effects of different machine learning models,Conghua District,which is the most prone to landslide disasters in Guangzhou,was selected for landslide susceptibility evaluation.The evaluation factors were selected by using correlation analysis and variance expansion factor method.Applying four machine learning methods namely Logistic Regression(LR),Random Forest(RF),Support Vector Machines(SVM),and Extreme Gradient Boosting(XGB),landslide models were constructed.Comparative analysis and evaluation of the model were conducted through statistical indices and receiver operating characteristic(ROC)curves.The results showed that LR,RF,SVM,and XGB models have good predictive performance for landslide susceptibility,with the area under curve(AUC)values of 0.752,0.965,0.996,and 0.998,respectively.XGB model had the highest predictive ability,followed by RF model,SVM model,and LR model.The frequency ratio(FR)accuracy of LR,RF,SVM,and XGB models was 0.775,0.842,0.759,and 0.822,respectively.RF and XGB models were superior to LR and SVM models,indicating that the integrated algorithm has better predictive ability than a single classification algorithm in regional landslide classification problems.
基金supported by the Fundamental Research Funds for the National Major Science and Technology Projects of China (No. 2017ZX05009-005)。
文摘The application of carbon dioxide(CO_(2)) in enhanced oil recovery(EOR) has increased significantly, in which CO_(2) solubility in oil is a key parameter in predicting CO_(2) flooding performance. Hydrocarbons are the major constituents of oil, thus the focus of this work lies in investigating the solubility of CO_(2) in hydrocarbons. However, current experimental measurements are time-consuming, and equations of state can be computationally complex. To address these challenges, we developed an artificial intelligence-based model to predict the solubility of CO_(2) in hydrocarbons under varying conditions of temperature, pressure, molecular weight, and density. Using experimental data from previous studies,we trained and predicted the solubility using four machine learning models: support vector regression(SVR), extreme gradient boosting(XGBoost), random forest(RF), and multilayer perceptron(MLP).Among four models, the XGBoost model has the best predictive performance, with an R^(2) of 0.9838.Additionally, sensitivity analysis and evaluation of the relative impacts of each input parameter indicate that the prediction of CO_(2) solubility in hydrocarbons is most sensitive to pressure. Furthermore, our trained model was compared with existing models, demonstrating higher accuracy and applicability of our model. The developed machine learning-based model provides a more efficient and accurate approach for predicting CO_(2) solubility in hydrocarbons, which may contribute to the advancement of CO_(2)-related applications in the petroleum industry.
文摘BACKGROUND Research has found that the amygdala plays a significant role in underlying pathology of major depressive disorder(MDD).However,few studies have explored machine learning-assisted diagnostic biomarkers based on amygdala functional connectivity(FC).AIM To investigate the analysis of neuroimaging biomarkers as a streamlined approach for the diagnosis of MDD in adolescents.METHODS Forty-four adolescents diagnosed with MDD and 43 healthy controls were enrolled in the study.Using resting-state functional magnetic resonance imaging,the FC was compared between the adolescents with MDD and the healthy controls,with the bilateral amygdala serving as the seed point,followed by statistical analysis of the results.The support vector machine(SVM)method was then applied to classify functional connections in various brain regions and to evaluate the neurophysiological characteristics associated with MDD.RESULTS Compared to the controls and using the bilateral amygdala as the region of interest,patients with MDD showed significantly lower FC values in the left inferior temporal gyrus,bilateral calcarine,right lingual gyrus,and left superior occipital gyrus.However,there was an increase in the FC value in Vermis-10.The SVM analysis revealed that the reduction in the FC value in the right lingual gyrus could effectively differentiate patients with MDD from healthy controls,achieving a diagnostic accuracy of 83.91%,sensitivity of 79.55%,specificity of 88.37%,and an area under the curve of 67.65%.CONCLUSION The results showed that an abnormal FC value in the right lingual gyrus was effective as a neuroimaging biomarker to distinguish patients with MDD from healthy controls.
基金the Youth Foundation of China Earthquake Networks Center (Project No.: QNJJ-202320)the Earthquake Science and Technology Spark Program of China Earthquake Administration (XH23052C)。
文摘The site effect is a crucial factor when analyzing seismic risk and establishing ground motion attenuation relationships. A number of countries have introduced building site classification into earthquake-resistant design codes to account for local site effects on ground motion. However, most site classification indicators rely on drilling data, which is often expensive and requires considerable manpower. As a result, the less detailed drilling data may lead to an undetermined site category of numerous stations. In this study, a Support Vector Machine(SVM) algorithm-based site classification model was trained to address this issue using strong ground motion data and site data from KiK-net and K-net. The classification model used the average HVSR curve of the labeled site and the combined inputs, including frequency, peak, “prominence”, and “sharpness” extracted from the curve. The SVM classification model has an accuracy of 76.12% on the test set, with recall rates of 82.69%, 75%, and 63.64%for sites Ⅰ, Ⅱ, and Ⅲ, respectively. The precision rates are 75.44%, 73.77%, and 87.50%, respectively, with F1scores of 78.90%, 74.38%, and 73.68%. For sites without significant peaks in the HVSR curve, the HVSR curve value was used as the characteristic parameter(input), and the SVM-based site classification model was also trained. The accuracy of class Ⅰ and Ⅱ is 75.86%. The results of this study show higher recall and accuracy rates than those obtained using the spectral ratio curve matching method and GRNN method, indicating a better classification performance. Finally, the generalization ability of the model was verified using some basic stations in Xinjiang deployed by the “National Seismic Intensity Rapid Reporting and Early Warning Project”. The SVMbased site classification model that employs strong motion data can provide more reliable classification results for sites without detailed borehole information, and the site classification results can serve as a reference for probing ground motion attenuation relationships, ground motion simulation, and seismic fortification considering the site effect.