期刊文献+
共找到2,052篇文章
< 1 2 103 >
每页显示 20 50 100
Research on characters of surrounding rock in complex geology conditions and supporting time 被引量:9
1
作者 Yu Weijian Gao Qian +1 位作者 Zhai Shuhua Zhang Meihua 《Engineering Sciences》 EI 2008年第2期91-96,共6页
The methods combined by test, field monitoring and theoretical analysis were adopted to do the systemic research on the rock mass from micro-structure to macro-deformation, and rheological model of Jinchuan rock mass ... The methods combined by test, field monitoring and theoretical analysis were adopted to do the systemic research on the rock mass from micro-structure to macro-deformation, and rheological model of Jinchuan rock mass was established to discuss the reasonable supporting time. Resuhs show that supporting after suitable stress and displacement release can benefit for the long-term stability of surrounding rock. 展开更多
关键词 complex geological conditions surrounding rock characteristic test supporting time theological characteristic
下载PDF
DETERMINATION METHOD OF OPTIMAL SUPPORTING TIME IN HEADING FACE
2
作者 杜长龙 曹红波 +1 位作者 王燕宁 张艳 《Journal of Coal Science & Engineering(China)》 1997年第2期41-44,共4页
This paper has put forward a concept of optimal supporting time through analysing the influence of the supporting time in the heading face on the supporting result of surrounding rock.The method Of the optimal Support... This paper has put forward a concept of optimal supporting time through analysing the influence of the supporting time in the heading face on the supporting result of surrounding rock.The method Of the optimal Supporting time determined by graphical method is discussed, and the calculating formula for determining the optimal supporting time through the analysis method is derived. 展开更多
关键词 heading face roadway support optimal supporting time
下载PDF
Chaotic time series prediction using fuzzy sigmoid kernel-based support vector machines 被引量:2
3
作者 刘涵 刘丁 邓凌峰 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第6期1196-1200,共5页
Support vector machines (SVM) have been widely used in chaotic time series predictions in recent years. In order to enhance the prediction efficiency of this method and implement it in hardware, the sigmoid kernel i... Support vector machines (SVM) have been widely used in chaotic time series predictions in recent years. In order to enhance the prediction efficiency of this method and implement it in hardware, the sigmoid kernel in SVM is drawn in a more natural way by using the fuzzy logic method proposed in this paper. This method provides easy hardware implementation and straightforward interpretability. Experiments on two typical chaotic time series predictions have been carried out and the obtained results show that the average CPU time can be reduced significantly at the cost of a small decrease in prediction accuracy, which is favourable for the hardware implementation for chaotic time series prediction. 展开更多
关键词 support vector machines chaotic time series prediction fuzzy sigmoid kernel
下载PDF
Small-time scale network traffic prediction based on a local support vector machine regression model 被引量:10
4
作者 孟庆芳 陈月辉 彭玉华 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第6期2194-2199,共6页
In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the... In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the reconstructed phase space, the local support vector machine prediction method is used to predict the traffic measurement data, and the BIC-based neighbouring point selection method is used to choose the number of the nearest neighbouring points for the local support vector machine regression model. The experimental results show that the local support vector machine prediction method whose neighbouring points are optimized can effectively predict the small-time scale traffic measurement data and can reproduce the statistical features of real traffic measurements. 展开更多
关键词 network traffic small-time scale nonlinear time series analysis support vector machine regression model
下载PDF
Development of a Simulation-Based Intelligent Decision Support System for the Adaptive Real-Time Control of Flexible Manufacturing Systems 被引量:1
5
作者 Babak Shirazi Iraj Mahdavi Maghsud Solimanpur 《Journal of Software Engineering and Applications》 2010年第7期661-673,共13页
This paper describes a simulation-based intelligent decision support system (IDSS) for real time control of a flexible manufacturing system (FMS) with machine and tool flexibility. The manufacturing processes involved... This paper describes a simulation-based intelligent decision support system (IDSS) for real time control of a flexible manufacturing system (FMS) with machine and tool flexibility. The manufacturing processes involved in FMS are complicated since each operation may be done by several machining centers. The system design approach is built around the theory of dynamic supervisory control based on a rule-based expert system. The paper considers flexibility in operation assignment and scheduling of multi-purpose machining centers which have different tools with their own efficiency. The architecture of the proposed controller consists of a simulator module coordinated with an IDSS via a real time event handler for implementing inter-process synchronization. The controller’s performance is validated by benchmark test problem. 展开更多
关键词 Intelligent DECISION support SYSTEM REAL time Control Flexible Manufacturing SYSTEM MULTI-PURPOSE MACHINING CENTERS
下载PDF
Research on Robotized Advance Support and Supporting Time for Deep Fully Mechanized Excavation Roadway
6
作者 LI Sanxi QIAO Hongbing XUE Guanghui 《Instrumentation》 2021年第1期61-73,共13页
To keep coal workers away from the hazardous area with frequent accidents such as the roof fall and rib spalling in an underground coalmine,we put forward the solution with robotized self-moving anchor-supporting unit... To keep coal workers away from the hazardous area with frequent accidents such as the roof fall and rib spalling in an underground coalmine,we put forward the solution with robotized self-moving anchor-supporting unit.The existing research shows that the surrounding rock of the roadway has self-stability,and the early or late support is not conducive to the safe and reliable support of the roadway,so there is a problem of support opportunity.In order to study the supporting effect and the optimal supporting time of the above solution,we established the mechanical coupling model of surrounding rock and advance support,and investigated the surrounding rock deformation and advance support pressure distribution under different reserved roof subsidence by using the numerical simulation software FLAC3D.The results show that the deformation of surrounding rock increases and finally tends to a stable level with the increase of pre settlement of roadway roof,and when the pre settlement of roof is between 8-15 mm,the vertical pressure of the top beam of advance support reaches the minimum value,about 0.58 MPa.Based on the above research,we put forward the optimum supporting time in roadway excavation,and summarized the evaluation method based on the mechanical coupling model of surrounding rock-advance support. 展开更多
关键词 Coalmine Safety Robotized Advance support Optimum supporting time Deep Fully Mechanized Excavation Roadway Mechanical Coupling Model
下载PDF
Time Series Forecasting Using Wavelet-Least Squares Support Vector Machines and Wavelet Regression Models for Monthly Stream Flow Data 被引量:1
7
作者 Siraj Muhammed Pandhiani Ani Bin Shabri 《Open Journal of Statistics》 2013年第3期183-194,共12页
This study explores the least square support vector and wavelet technique (WLSSVM) in the monthly stream flow forecasting. This is a new hybrid technique. The 30 days periodic predicting statistics used in this study ... This study explores the least square support vector and wavelet technique (WLSSVM) in the monthly stream flow forecasting. This is a new hybrid technique. The 30 days periodic predicting statistics used in this study are derived from the subjection of this model to the river flow data of the Jhelum and Chenab rivers. The root mean square error (RMSE), mean absolute error (RME) and correlation (R) statistics are used for evaluating the accuracy of the WLSSVM and WR models. The accuracy of the WLSSVM model is compared with LSSVM, WR and LR models. The two rivers surveyed are in the Republic of Pakistan and cover an area encompassing 39,200 km2 for the Jhelum River and 67,515 km2 for the Chenab River. Using discrete wavelets, the observed data has been decomposed into sub-series. These have then appropriately been used as inputs in the least square support vector machines for forecasting the hydrological variables. The resultant observation from this comparison indicates the WLSSVM is more accurate than the LSSVM, WR and LR models in river flow forecasting. 展开更多
关键词 RIVER Flow time Series Least SQUARE support MACHINES WAVELET
下载PDF
Support Vector Regression for Bus Travel Time Prediction Using Wavelet Transform 被引量:2
8
作者 Yang Liu Yanjie Ji +1 位作者 Keyu Chen Xinyi Qi 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2019年第3期26-34,共9页
In order to accurately predict bus travel time, a hybrid model based on combining wavelet transform technique with support vector regression(WT-SVR) model is employed. In this model, wavelet decomposition is used to e... In order to accurately predict bus travel time, a hybrid model based on combining wavelet transform technique with support vector regression(WT-SVR) model is employed. In this model, wavelet decomposition is used to extract important information of data at different levels and enhances the forecasting ability of the model. After wavelet transform different components are forecasted by their corresponding SVR predictors. The final prediction result is obtained by the summation of the predicted results for each component. The proposed hybrid model is examined by the data of bus route No.550 in Nanjing, China. The performance of WT-SVR model is evaluated by mean absolute error(MAE), mean absolute percent error(MAPE) and relative mean square error(RMSE), and also compared to regular SVR and ANN models. The results show that the prediction method based on wavelet transform and SVR has better tracking ability and dynamic behavior than regular SVR and ANN models. The forecasting performance is remarkably improved to obtain within 6% MAPE for testing section Ⅰ and 8% MAPE for testing section Ⅱ, which proves that the suggested approach is feasible and applicable in bus travel time prediction. 展开更多
关键词 intelligent TRANSPORTATION BUS TRAVEL time prediction WAVELET TRANSFORM support vector regression hybrid model
下载PDF
Prediction and analysis of chaotic time series on the basis of support vector
9
作者 Li Tianliang He Liming Li Haipeng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第4期806-811,共6页
Based on discussion on the theories of support vector machines (SVM), an one-step prediction model for time series prediction is presented, wherein the chaos theory is incorporated. Chaotic character of the time ser... Based on discussion on the theories of support vector machines (SVM), an one-step prediction model for time series prediction is presented, wherein the chaos theory is incorporated. Chaotic character of the time series is taken into account in the prediction procedure; parameters of reconstruction-detay and embedding-dimension for phase-space reconstruction are calculated in light of mutual-information and false-nearest-neighbor method, respectively. Precision and functionality have been demonstrated by the experimental results on the basis of the prediction of Lorenz chaotic time series. 展开更多
关键词 support vector machines chaotic time series prediction model FUNCTIONALITY
下载PDF
Configuration for Predicting Travel-Time Using Wavelet Packets and Support Vector Regression 被引量:1
10
作者 Adeel Yusuf Vijay K. Madisetti 《Journal of Transportation Technologies》 2013年第3期220-231,共12页
Travel-time prediction has gained significance over the years especially in urban areas due to increasing traffic congestion. In this paper, the basic building blocks of the travel-time prediction models are discussed... Travel-time prediction has gained significance over the years especially in urban areas due to increasing traffic congestion. In this paper, the basic building blocks of the travel-time prediction models are discussed, with a small review of the previous work. A model for the travel-time prediction on freeways based on wavelet packet decomposition and support vector regression (WDSVR) is proposed, which used the multi-resolution and equivalent frequency distribution ability of the wavelet transform to train the support vector machines. The results are compared against the classical support vector regression (SVR) method. Our results indicated that the wavelet reconstructed coefficient when used as an input to the support vector machine for regression performed better (with selected wavelets only), when compared with the support vector regression model (without wavelet decomposition) with a prediction horizon of 45 minutes and more. The data used in this paper was taken from the California Department of Transportation (Caltrans) of District 12 with a detector density of 2.73, experiencing daily peak hours except most weekends. The data was stored for a period of 214 days accumulated over 5-minute intervals over a distance of 9.13 miles. The results indicated MAPE ranging from 12.35% to 14.75% against the classical SVR method with MAPE ranging from 12.57% to 15.84% with a prediction horizon of 45 minutes to 1 hour. The basic criteria for selection of wavelet basis for preprocessing the inputs of support vector machines are also explored to filter the set of wavelet families for the WDSVR model. Finally, a configuration of travel-time prediction on freeways is presented with interchangeable prediction methods. 展开更多
关键词 TRAVEL-time Prediction WAVELET PACKETS support VECTOR Regression Advanced TRAVELER Information System
下载PDF
DIAGNOSTICS OF FATIGUE CRACK IN ULTERIOR PLACES OF LARGER-SCALE OVERLOADED SUPPORTING SHAFT BASED ON TIME SERIES AND NEURAL NETWORKS 被引量:2
11
作者 LI Xueiun BIN Guangfu CHU Fulei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第3期79-82,共4页
To improve the diagnosis accuracy and self-adaptability of fatigue crack in ulterior place of the supporting shaft, time series and neural network are attempted to be applied in research on diag-nosing the fatigue cr... To improve the diagnosis accuracy and self-adaptability of fatigue crack in ulterior place of the supporting shaft, time series and neural network are attempted to be applied in research on diag-nosing the fatigue crack’s degree based on analyzing the vibration characteristics of the supporting shaft. By analyzing the characteristic parameter which is easy to be detected from the supporting shaft’s exterior, the time series model parameter which is hypersensitive to the situation of fatigue crack in ulterior place of the supporting shaft is the target input of neural network, and the fatigue crack’s degree value of supporting shaft is the output. The BP network model can be built and net-work can be trained after the structural parameters of network are selected. Furthermore, choosing the other two different group data can test the network. The test result will verify the validity of the BP network model. The result of experiment shows that the method of time series and neural network are effective to diagnose the occurrence and the development of the fatigue crack’s degree in ulterior place of the supporting shaft. 展开更多
关键词 Neural network time series Larger-scale overloaded supporting shaft Ulterior place Fatigue crack
下载PDF
Short-Term Financial Time Series Forecasting Integrating Principal Component Analysis and Independent Component Analysis with Support Vector Regression
12
作者 Utpala Nanda Chowdhury Sanjoy Kumar Chakravarty Md. Tanvir Hossain 《Journal of Computer and Communications》 2018年第3期51-67,共17页
Financial time series forecasting could be beneficial for individual as well as institutional investors. But, the high noise and complexity residing in the financial data make this job extremely challenging. Over the ... Financial time series forecasting could be beneficial for individual as well as institutional investors. But, the high noise and complexity residing in the financial data make this job extremely challenging. Over the years, many researchers have used support vector regression (SVR) quite successfully to conquer this challenge. In this paper, an SVR based forecasting model is proposed which first uses the principal component analysis (PCA) to extract the low-dimensional and efficient feature information, and then uses the independent component analysis (ICA) to preprocess the extracted features to nullify the influence of noise in the features. Experiments were carried out based on 16 years’ historical data of three prominent stocks from three different sectors listed in Dhaka Stock Exchange (DSE), Bangladesh. The predictions were made for 1 to 4 days in advance targeting the short term prediction. For comparison, the integration of PCA with SVR (PCA-SVR), ICA with SVR (ICA-SVR) and single SVR approaches were applied to evaluate the prediction accuracy of the proposed approach. Experimental results show that the proposed model (PCA-ICA-SVR) outperforms the PCA-SVR, ICA-SVR and single SVR methods. 展开更多
关键词 FINANCIAL time Series Forecasting support Vector Regression Principal COMPONENT ANALYSIS Independent COMPONENT ANALYSIS Dhaka STOCK Exchange
下载PDF
基于电化学阻抗谱的锂电池过充电阻抗特性与检测方法研究 被引量:3
13
作者 董明 刘王泽宇 +5 位作者 李晓枫 贺馨仪 熊锦晨 罗阳 张崇兴 任明 《中国电机工程学报》 EI CSCD 北大核心 2024年第9期3388-3398,I0004,共12页
目前以锂电池为主的电化学储能单元及系统应用日益广泛,而锂电池在实际使用中频发因过充电滥用引发电池故障的情况,因此实际电池的过充电状态准确检测一直是该领域的难点和瓶颈问题。针对此,该文采用电化学阻抗谱技术对单体电池过充电... 目前以锂电池为主的电化学储能单元及系统应用日益广泛,而锂电池在实际使用中频发因过充电滥用引发电池故障的情况,因此实际电池的过充电状态准确检测一直是该领域的难点和瓶颈问题。针对此,该文采用电化学阻抗谱技术对单体电池过充电行为及过程开展检测研究,在实验室设计并制定电池过充电模拟循环实验,利用弛豫时间分布法对锂电池阻抗特性进行分析;在获得电池阻抗特性的基础上,对电池弛豫时间分布曲线进行解析;最后筛选阻抗特征参量为模型输入量,构建支持向量机模型进行电池过充电检测。结果表明,弛豫时间分布曲线中的极化峰P1对应锂离子在固态电解质界面(solid electrolyte interphase,SEI)膜中的扩散过程、极化峰P2对应电子在正极材料中的扩散过程、极化峰P3对应锂离子在电极界面的氧化还原反应。过充电会导致电池欧姆内阻、SEI膜内阻与电荷转移电阻的增长速率最大为正常循环的266%、360%和182%,其中固态电解质界面SEI膜内阻为主要因素。电化学阻抗谱的阻抗特征参量以及支持向量机模型可以用于锂电池过充电检测,估计精度达93.24%。不仅可掌握电池的运行状态,还可对过充电进行有效辨识。 展开更多
关键词 锂离子电池 弛豫时间分布 电化学阻抗谱 过充电 支持向量机
下载PDF
基于时间窗的机场地面保障车辆动态调度
14
作者 姜伟华 张文静 +1 位作者 袁琪 姜雨 《科学技术与工程》 北大核心 2024年第3期1283-1291,共9页
机场各类地面资源的优化配置是机场场面运行优化的核心问题,而机场地面保障任务的调度是其中的关键一环。针对机场地面保障车辆的调度问题,考虑航班延误、提前等情况,构建了双阶段机场地面保障车辆调度模型,并设计双阶段启发式算法进行... 机场各类地面资源的优化配置是机场场面运行优化的核心问题,而机场地面保障任务的调度是其中的关键一环。针对机场地面保障车辆的调度问题,考虑航班延误、提前等情况,构建了双阶段机场地面保障车辆调度模型,并设计双阶段启发式算法进行求解;基于中国某大型机场的实际运行数据,以清水车和食品车调度为例分别进行仿真实验。结果表明:对比先到先服务策略,清水车行驶总距离减少55.31%,食品车行驶总距离减少47.38%;对比传统遗传算法,清水车行驶总距离减少19.31%,食品车行驶总距离减少22.93%;动态调整后,清水车新增总行驶距离1.2%,食品车总行驶距离新增3.2%,均在可接受范围之内。可见,双阶段机场地面保障车辆调度模型能提高大型机场场面运行效率,为机场航班实际地面保障任务调度提供理论依据和决策支持。 展开更多
关键词 机场地面保障服务 软时间窗 车辆动态调度 改进遗传算法
下载PDF
家庭支持对高中生生涯适应力的影响:主动性人格与时间管理倾向的链式中介作用
15
作者 朱凌云 《心理研究》 2024年第5期445-452,共8页
为了研究家庭支持、主动性人格、时间管理倾向对高中生生涯适应力的影响机制,采用家庭支持问卷、主动性人格量表、时间管理倾向量表和生涯适应力问卷对北京市3736名高中生进行调查研究。结果:(1)家庭支持、主动性人格、时间管理倾向和... 为了研究家庭支持、主动性人格、时间管理倾向对高中生生涯适应力的影响机制,采用家庭支持问卷、主动性人格量表、时间管理倾向量表和生涯适应力问卷对北京市3736名高中生进行调查研究。结果:(1)家庭支持、主动性人格、时间管理倾向和生涯适应力两两之间具有显著的正相关关系;(2)在控制了性别与年级的影响后,家庭支持对高中生的生涯适应力具有直接的正向预测作用,而且会通过主动性人格和时间管理倾向间接影响个体的生涯适应力。结论:家庭支持能够正向预测高中生的生涯适应力水平、主动性人格和时间管理倾向,主动性人格和时间管理倾向在家庭支持和高中生生涯适应力之间起链式中介作用。 展开更多
关键词 家庭支持 主动性人格 时间管理倾向 生涯适应力
下载PDF
扶养义务的“激活”与“过去时间的扶养费”的有限可追索性 被引量:1
16
作者 徐国栋 《西南政法大学学报》 2024年第1期27-36,共10页
古罗马皇帝哥尔迪安的敕答开创了过去时间的扶养费的法律地位问题,将之降等,允许其成为和解的对象。虢多弗雷多把这一问题改造成时间错位问题,形成不诉追过去时间的扶养费构成不需要此等经济支持的表面证据的推理,以此保护扶养义务人并... 古罗马皇帝哥尔迪安的敕答开创了过去时间的扶养费的法律地位问题,将之降等,允许其成为和解的对象。虢多弗雷多把这一问题改造成时间错位问题,形成不诉追过去时间的扶养费构成不需要此等经济支持的表面证据的推理,以此保护扶养义务人并鼓励权利人自力更生。波坦诺明确提出了过去时间的扶养费不受追诉的原则,被至少被10部现代民法典采用。其中,《德国民法典》对这一问题作了最明确细致的规定,它原则上不许追索过去时间的扶养费,但允许一定的例外。《意大利民法典》的德译者把父母与其未成年子女的生活保持关系排除作为过去时间的扶养费不受追索的适用对象,强调了抚养与扶养、赡养的不同,甚有道理。王利明教授负责起草的民法典学者建议稿也采用了这一规则。有了这些作为基础,我国应通过司法解释确立过去时间的扶养费不可无限追索的规则。 展开更多
关键词 扶养 过去时间的扶养费 催告 第三人扶养 禁反言
下载PDF
基于IAOA-SVM模型结构时变可靠性研究
17
作者 郑建校 张小康 +1 位作者 王亮亮 张锦华 《安徽理工大学学报(自然科学版)》 CAS 2024年第3期7-14,共8页
目的为有效解决使用传统代理模型进行结构时变可靠性研究中存在流程复杂、计算效率低等问题。方法提出以改进算术优化算法(Improved Arithmetic Optimization Algorithm,IAOA)优化支持向量机模型(Support Vector Machine,SVM)进行时变... 目的为有效解决使用传统代理模型进行结构时变可靠性研究中存在流程复杂、计算效率低等问题。方法提出以改进算术优化算法(Improved Arithmetic Optimization Algorithm,IAOA)优化支持向量机模型(Support Vector Machine,SVM)进行时变可靠性研究的方法,结合IAOA-SVM模型和极值理论,以某塔式起重机回转支承为研究对象,对其进行动态确定性分析获取样本数据,建立IAOA-SVM可靠性模型,采用蒙特卡洛法求解得到其可靠度结果,并与EKM和ERSM算法对比分析其仿真精度和效率。结果当回转支承径向变形许用值为0.278×10^(-3)m时,采用蒙特卡洛法求解得到其可靠度为99.68%,IAOA-SVM模型相比EKM和ERSM方法仿真效率有所提升,建模精度分别提高了10.42%和9.23%。结论IAOA-SVM方法在建模和仿真精度与效率方面具有较明显的优势,IAOA-SVM方法为求解机构时变可靠度难题提供了一种新的解决思路。 展开更多
关键词 时变可靠性 支持向量机 算术优化算法 回转支承
下载PDF
基于SARIMA-SVR模型的铁路货运量预测方法
18
作者 钱名军 李明鲡 黄鑫 《铁道运输与经济》 北大核心 2024年第9期83-94,共12页
鉴于铁路货运量受多种外部因素影响呈现显著的随机波动特征而难以准确预测,提出了SARIMA-SVR预测模型。首先,对全国铁路月度货运量序列进行季节时间序列(SARIMA)建模,得到模型的初始预测值及预测残差。其次,构建支持向量机(SVR)回归预... 鉴于铁路货运量受多种外部因素影响呈现显著的随机波动特征而难以准确预测,提出了SARIMA-SVR预测模型。首先,对全国铁路月度货运量序列进行季节时间序列(SARIMA)建模,得到模型的初始预测值及预测残差。其次,构建支持向量机(SVR)回归预测模型,将影响铁路货运量的外部因素作为模型输入项,SARIMA模型预测残差序列、月度货运量序列分别作为模型输出项,由此分别获得SARIMA模型预测残差的优化值以及SVR模型的货运量预测值。三是将优化后的SARIMA模型预测残差与其初始预测值相加,得到优化后的SARIMA模型预测值。四是再对优化后的SARIMA模型预测值和SVR模型预测值进行加权求和,得到SARIMA-SVR模型的预测结果。最后,对SARIMA-SVR模型进行消融实验验证模型有效性,并将该模型与经典预测模型进行测算精度对比。结果表明,SARIMA-SVR模型的预测精度优于单一模型和经典预测模型,在货运量预测方面具有良好的适用性。 展开更多
关键词 铁路运输 货运量预测 SARIMA-SVR模型 季节性时间序列 支持向量机
下载PDF
基于ICEEMDAN和时变权重集成预测模型的变压器油中溶解气体含量预测 被引量:2
19
作者 马宏忠 肖雨松 +3 位作者 孙永腾 李勇 朱雷 许洪华 《高电压技术》 EI CAS CSCD 北大核心 2024年第1期210-220,共11页
为了实现对变压器油中溶解气体体积分数的精确预测,同时克服仅使用单一预测模型导致预测精度及泛化能力不足的局限,提出了一种基于改进完全自适应噪声集合经验模态分解(improved complete ensemble empirical mode decomposition,ICEEMD... 为了实现对变压器油中溶解气体体积分数的精确预测,同时克服仅使用单一预测模型导致预测精度及泛化能力不足的局限,提出了一种基于改进完全自适应噪声集合经验模态分解(improved complete ensemble empirical mode decomposition,ICEEMDAN)和灰色关联系数时变权重集成预测模型的变压器油中溶解气体预测方法。首先将溶解气体含量序列模态分解为一系列具有不同时间尺度的子序列。然后,使用门控循环神经网络和麻雀搜索算法优化支持向量机对各子序列进行训练,组合为一个集成预测模型;并比较不同预测方法的预测精度,计算灰色关联系数时变权重,形成各子系列的预测结果。最后将各子序列的预测结果叠加重构,得到最终预测结果。算例分析结果显示:该方法单步预测的均方根误差、平均绝对误差和相关系数分别为0.593、0.422和0.768,相比其他算法在预测精度上有明显提升,同时具有很强的泛化性能,可以为油浸式变压器内部状态监测提供依据。 展开更多
关键词 油中溶解气体 ICEEMDAN 麻雀搜索算法 支持向量机 门控循环神经网络 时变权重 集成模型
下载PDF
基于参数自适应SVR和VMD-TCN的水电机组劣化趋势预测 被引量:2
20
作者 王淑青 柯洋洋 +2 位作者 胡文庆 罗平章 李青珏 《中国农村水利水电》 北大核心 2024年第4期193-198,204,共7页
针对水电机组难以利用实时监测数据对机组劣化状态进行有效评估,以及水电机组不同运行工况对运行状态指标趋势预测模型参数影响显著的问题,提出一种基于参数自适应支持向量回归机(SVR)、变分模态分解(VMD)和时间卷积网络(TCN)的水电机... 针对水电机组难以利用实时监测数据对机组劣化状态进行有效评估,以及水电机组不同运行工况对运行状态指标趋势预测模型参数影响显著的问题,提出一种基于参数自适应支持向量回归机(SVR)、变分模态分解(VMD)和时间卷积网络(TCN)的水电机组劣化趋势预测方法;首先按照功率和水头将机组运行工况细化为若干典型工况,在此基础上采用改进天鹰算法建立SVR模型,对各个工况下的预测参数进行寻优,建立起工况与最优参数的数据;再通过神经网络对工况和最优预测参数进行拟合,构建出映射两者复杂关系的非线性函数,然后将构建出的映射关系加入到传统的SVR中,实现适应于水电机组工况变化的自适应SVR健康模型;其次,根据健康模型输出的标准值和监测数据,计算出劣化趋势序列;最后,考虑到劣化趋势序列的非线性因素,建立了一个基于VMD-TCN的时间序列预测模型,以实现对劣化趋势的准确预测。并设计多组对比实验,验证所提出模型的精度更高,时间更快。 展开更多
关键词 水电机组 劣化趋势预测 参数自适应 支持向量回归机 变分模态分解 时间卷积网络
下载PDF
上一页 1 2 103 下一页 到第
使用帮助 返回顶部