期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
The genesis of Archean supracrustal rocks in the western Shandong Province of North China Craton: Constraints on regional crustal evolution 被引量:3
1
作者 WANG Wei ZHAI MingGuo M.SANTOSH 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第8期1583-1596,共14页
Archean greenstone belts are supracrustal sequences, the lower part of which is usually composed of voluminous ultramafic-mafic volcanics. Intermediate and acid volcanic rocks increase in abundance towards the upper d... Archean greenstone belts are supracrustal sequences, the lower part of which is usually composed of voluminous ultramafic-mafic volcanics. Intermediate and acid volcanic rocks increase in abundance towards the upper domains. Greenstone belts constitute ~30% of the total volume of Archean cratons, and preserve significant information on the surface environment and magmatism in the early earth, which are useful in unraveling the nature of crustal formation and evolution. The western Shandong Province(WSP) is located at the eastern part of the North China Craton(NCC), where greenstone sequences formed at ~2.7 and ~2.5 Ga were well preserved. The early Neoarchean supracrustal rocks include komatiite-basalt sequence, some meta-sediments of the lower part of the Taishan Group and the Mengjiatun Formation. The volcanism had been correlated to mantle plume, which resulted in vertical crustal accretion. The late Neoarchean supracrustal rocks were composed of metamorphosed felsic volcano-sedimentary sequences and BIFs of the upper part of the Taishan Group and the Jining Group. The geochemical features of the meta-volcanics show calc-alkaline affinities, similar to modern arc-related magmatism, suggesting that the continental crust in the western Shandong Province witnessed horizontal plate movements at ~2.5 Ga. The metasediments and leucosomes in the Qixingtai area display regional upper amphibolite facies metamorphism and anatexis at 2.53–2.50 Ga, coeval with formation of large volumes of crustally-derived granites. These tectono-thermal events suggest that a unified continental crust was formed in the western Shandong Province at the end of Neoarchean. 展开更多
关键词 supracrustal rocks Greenstone belts Taishan Group Western Shandong Province North China Craton
原文传递
Report on 3.4 Ga SHRIMP Zircon Age from the Yuntaishan Geopark in Jiaozuo, Henan Province 被引量:4
2
作者 GAO Linzhi ZHAO Ting +3 位作者 WAN Yusheng ZHAO Xun MA Yinsheng YANG Shouzheng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2006年第1期52-57,共6页
Using the reported new U-Pb age with the Sensitive High-Resolution Ion Microprobe (SHRIMP Ⅱ), zircon U-Pb ages were obtained from two samples of K-feldspar felsic paragneiss and K-feldspar gneissoid trondhjemite on... Using the reported new U-Pb age with the Sensitive High-Resolution Ion Microprobe (SHRIMP Ⅱ), zircon U-Pb ages were obtained from two samples of K-feldspar felsic paragneiss and K-feldspar gneissoid trondhjemite on the southern margin of the Taihang Mountains in the North China Craton. The protolith of the K-feldspar felsic paragneiss is argillaceous-sandy clastic sedimentary rock, probably deposited in the Neoarchean. Most of the detritus zircons show heavy loss of Pb. Five spots of zircons near the upper point, yield a weighted mean ^207Pb/^206Pb age of 3399±8 Ma, representing an age of the sedimentary source. Two groups of zircons from the K-feldspar gneissoid trondhjemite give weighted mean ^207Pb/^206Pb ages of 2511±13 Ma and 2735±16 Ma respectively. The former represents the emplacement time of the pluton, while the latter is interpreted as the age of the inherited zircons. The new data support that the Archean geological body in the central zone has an affinity with those from the eastern block of the North China Craton. 展开更多
关键词 NEOARCHEAN SHRIMP supracrustal rock volcanic rock North China Craton
下载PDF
Discovery and Geological Significance of Neoproterozoic Metamorphic Granite in Jimo, Shandong Province, Eastern China 被引量:3
3
作者 ZHU Decheng Lü Dawei +4 位作者 SHEN Xiaoli YANG Qing LI Dandan REN Tianlong YANG Shipeng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第6期2080-2096,共17页
During the 1:50000 regional geological survey in Jimo, east Shandong Province, Paleoproterozoic metamorphic supracrustal rocks and Neoproterozoic metamorphic plutonite were newly discovered. These rocks displayed inc... During the 1:50000 regional geological survey in Jimo, east Shandong Province, Paleoproterozoic metamorphic supracrustal rocks and Neoproterozoic metamorphic plutonite were newly discovered. These rocks displayed inclusions which had occurred in the Mesozoic granite, and the main lithologies are schist, granulite, marble, and granitic gneiss. Geochemical analyses suggest that Neoproterozoic metamorphic plutonite are characterized by high-K, metaluminous to weakly peraluminous. They are enriched in LILE and depleted in HFSE, with moderately enrichment of LREE, weak fractionation of LREE from HREE and negative Eu anomalies. The surface age of plutonic rocks in the survey area is 770.2±2.4 Ma, representing the age of magma crystallization, which is agreement with the the Neoproterozoic magmatic event after Rodinia supercontinent in the northern margin of Southern China continental block. In addition, the age of sporadic distribution (298 Ma and 269 Ma) is mixed zircon age, representing the rocks experienced metamorphism in Indosinian period. According to the associated mineral assemblages, and the characteristic metamorphic minerals and temperature pressure conditions, four metamorphic facies were identified, including amphibolitic, epidote amphibolite, greenschist, and mid-high pressure greenschist. Analysis of tectonic setting suggests that granitic gneiss is formed in an extensional environment and was involved from the continental margin magmatic arc to intraplate environment. Jimo is distributed in the east of Zhuwu fault, and has the same Spatial distribution location with the Weihai uplift UHP metamorphic belt rocks. The metamorphic rocks in Jimo area have similar geochemical characteristics of elements, tectonic setting and retrograde metamorphism with that in the Sulu UHP metamorphic belt. Therefore, Zhuwu fault may be the boundary fault of Sulu UHP metamorphic belt. 展开更多
关键词 metamorphic supracrustal rock metamorphic granite metamorphic facies Jimo Zhuwu fault
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部