The magnetism and surface behaviour of Pt-Dy/γ-Al_2O_3 catalysts were studied respectively by means of a Faraday magnetic balance and the method of carbon disulfide.The ferromagnetic impurity in the support,γ-Al_2O_...The magnetism and surface behaviour of Pt-Dy/γ-Al_2O_3 catalysts were studied respectively by means of a Faraday magnetic balance and the method of carbon disulfide.The ferromagnetic impurity in the support,γ-Al_2O_3,at low temperature was corrected for the first time.The magnetic susceptibilities of the cat- alysts follow the sequence in different stage of preparation:χ_(uncalcined)<χ_(calcined)<χ_(reduced). The magnetic susceptibilities of the catalysts decrease as they adsorb hydrogen,cyclohexane or benzene. There is a correlation between the aromatization yield of cyclohexane or heptane on these catalysts and the magnetic susceptibility of the catalysts.Since addition of Dy increases the number of adsorption sites and the relevant proportions of weak adsorption sites,the abilities of sulfur-resistance and cyclohexane dehydrogenation are improved.In Pt-Dy/γ-A:_2O_3 catalysts,Dy improves the aromatization activity and stability of the catalyst and plays the role of the electron promoter.展开更多
A key feature that distinguishes cancer cells from all other cells is their capability to spread throughout the body.Although how cancer cells collectively migrate by following molecular rules which influence the stat...A key feature that distinguishes cancer cells from all other cells is their capability to spread throughout the body.Although how cancer cells collectively migrate by following molecular rules which influence the state of cell-cell adhesion contacts has been comprehensively formulated,the impact of physical interactions on cell spreading remains less understood.Cumulative effects of physical interactions exist as the interplay between various physical parameters such as(1)tissue surface tension,(2)viscoelasticity caused by collective cell migration,and(3)solid stress accumulated in the cell aggregate core region.This review aims to point out the role of these physical parameters in cancer cell spreading by considering and comparing the rearrangement of various mono-cultured cancer and epithelial model systems such as the fusion of two cell aggregates.While epithelial cells undergo volumetric cell rearrangement driven by the tissue surface tension,which directs cell movement from the surface to the core region of two-aggregate systems,cancer cells rather perform surface cell rearrangement.Cancer cells migrate toward the surface of the two-aggregate system driven by the solid stress while the surface tension is significantly reduced.The solid stress,accumulated in the core region of the two-aggregate system,is capable of suppressing the movement of epithelial cells that can undergo the jamming state transition;however,this stress enhances the movement of cancer cells.We have focused here on the multi-scale rheological modeling approaches that aimed at reproducing and understanding these biological systems.展开更多
The soot surface growth plays significant role on the soot mass accumulation,which starts with H(hydrogen)atom abstraction forming activated soot surface sites,and is followed by the acetylene addition process.In this...The soot surface growth plays significant role on the soot mass accumulation,which starts with H(hydrogen)atom abstraction forming activated soot surface sites,and is followed by the acetylene addition process.In this study,the effect of the mixture inhomogeneity and combustion temperature on the soot surface activity and soot formation was investigated by developing a new multi-step phenomenological(MSP)soot model of diesel engines.A new detailed soot surface growth mechanism was proposed by correlation analysis of combustion parameters with soot formation.The inhomogeneity coefficient of soot surface activityαCH and the specific rate of soot surface growth R CH were derived to highlight the effect of inhomogeneity of mixture and combustion temperature on soot formation.The predicted diesel engine-out soot agreed well with experimental findings in wide ranges of combustion conditions.In the case of lower engine load with single fuel injection and higher EGR(exhaust gas recirculation)rate,it had quiet homogeneous mixtures before ignition when the combustion temperature dominated the soot surface activity.At medium engine load with multi-pulse fuel injections,it got mixture slightly stratified before ignition and revealed that the mixture inhomogeneity became more dominated on soot surface activity than the combustion temperature.An increased soot surface activity led to increased soot emission.Under the full engine loads with single fuel injection but quite high boost pressure over 0.4 MPa,it led to the combustion conditions of higher mixture density and higher mixture heat capacity,which benefits the mixture homogeneity.The decay rate of soot surface activity became lower due to the decreased combustion temperature and the soot surface activity decreased due to improved mixture homogeneity.In addition,the lowered intake oxygen concentration due to usage of EGR played a role to lower the specific rate of soot surface growth R CH,but to increase the soot surface activityαCH.展开更多
Fluorosurfactants are the key ingredients in the formulations of aqueous film-forming foams(AFFFs)for extinguishing flammable liquids,thus developing high-efficient and low-toxic fluorosurfactants is desirable in AFFF...Fluorosurfactants are the key ingredients in the formulations of aqueous film-forming foams(AFFFs)for extinguishing flammable liquids,thus developing high-efficient and low-toxic fluorosurfactants is desirable in AFFFs application.Herein,a series of hyperbranched polymeric fluorosu rfactants(HPFs)were successfully synthesized through sequentially modifying hyperbranched polyethylenimine(PEI)with the hydrophilic poly(ethylene glycol)(PEG)chains and the hydrophobic C6/C4-based perfluoroalkyl chains,which were verified by FTIR,^(1)H-and^(19)F-NMR.The surface tensions of all the HPFs in water were measured,and the corresponding physicochemical parameters were interpreted.It was found that the surface activities of HPFs could be tuned through adjusting the ratio of PEG to perfluoroalkyl chains,the length of perfluoroalkyl chains,the molecular weight of PEI core,but not the PEG chain length.In the binary mixture of HPFs with the commercial small molecule fluorosurfactant Capstone^(TM)1157(C1157),a strong synergism led to the elevation of surface activity,which was attributed to the efficient encapsulation of C1157 guests by the compact hyperbranched HPFs as the hosts.The utilization of HPF/C1157 as fluorosurfactant ingredients in AFFF formulations could realize much higher fire-extinguishing efficiency towards flammable oils than the control AFFFs prepa red from the polymeric Capstone^(TM)1460 or the neat C1157.展开更多
Mixing hydrocarbon surfactants with fluorocarbon surfactants is still an important strategy to improve the economic benefits and performances of fluorocarbon surfactants and expand their range of application.Herein,we...Mixing hydrocarbon surfactants with fluorocarbon surfactants is still an important strategy to improve the economic benefits and performances of fluorocarbon surfactants and expand their range of application.Herein,we prepared a novel kind of hydrocarbon-fluorocarbon surfactant mixtures via mixing a cationic surfactant,cetyltrimethylammonium bromide(CTAB),with a tri-block nonionic short-chain fluorocarbon surfactant(F_(9)EG_(13)F_(9))in aqueous solution.The results showed that adding a small CTAB amount to F_(9)EG_(13)F_(9)(the molar fraction of CTAB in the mixture(x_(1))was 0.2)could greatly reduce its critical micelle concentrations(cmc)from 0.408mmol/L to 0.191 mmol/L.At this x_(1),the contact angle of the mixture was the minimum(57.7°)at 100 s on polytetrafluoroethylene film,which was even lower than that of F_(9)EG_(13)F_(9).Besides,CTAB/F_(9)EG_(13)F_(9) mixtures possessed better colloidal stability and solubilization ability toward hydrophobic dye(SudanІ)than F_(9)EG_(13)F_(9).The outstanding performances of binary surfactant mixtures benefited from the non-ideal mixing and strong synergistic effect evidence that CTAB/F_(9)EG_(13)F_(9) surfactant mixtures could be used in practical applications instead of individual F_(9)EG_(13)F_(9),thereby reducing the used cost of F_(9)EG_(13)F_(9).展开更多
α‐,β‐,δ‐,andγ‐MnO2nanocrystals are successfully prepared.We then evaluated the NH3selective catalytic reduction(SCR)performance of the MnO2catalysts with different phases.The NOx conversion efficiency decrease...α‐,β‐,δ‐,andγ‐MnO2nanocrystals are successfully prepared.We then evaluated the NH3selective catalytic reduction(SCR)performance of the MnO2catalysts with different phases.The NOx conversion efficiency decreased in the order:γ‐MnO2>α‐MnO2>δ‐MnO2>β‐MnO2.The NOx conversion with the use ofγ‐MnO2andα‐MnO2catalysts reached90%in the temperature range of140–200°C,while that based onβ‐MnO2reached only40%at200°C.Theγ‐MnO2andα‐MnO2nanowire crystal morphologies enabled good dispersion of the catalysts and resulted in a relatively high specific surface area.We found thatγ‐MnO2andα‐MnO2possessed stronger reducing abilities and more and stronger acidic sites than the other catalysts.In addition,more chemisorbed oxygen existed on the surface of theγ‐MnO2andα‐MnO2catalysts.Theγ‐MnO2andα‐MnO2catalysts showed excellent performance in the low‐temperature SCR of NO to N2with NH3.展开更多
The chemical structure of newly synthesized cationic surfactants based on Schiff base was confirmed using Fourier transform infrared spectroscopy,proton nuclear magnetic resonance spectroscopy,and mass spectroscopy.Th...The chemical structure of newly synthesized cationic surfactants based on Schiff base was confirmed using Fourier transform infrared spectroscopy,proton nuclear magnetic resonance spectroscopy,and mass spectroscopy.The synthesized surfactants were used in the synthesis of silver nanoparticles by a simple one-step method.The silver nanoparticle(AgNPs) formation was confirmed using transmission electron microscopy(TEM),electron diffraction(SAED),dynamic light scattering(DLS),and energy dispersive X-ray spectroscopy(EDX).The structure of the surfactant played an important role in the synthesis process.Increasing the hydrophobic chain length,the stability,and the amount of surfactant increased the quantity of AgNPs formed.The surface activity of the synthesized cationic surfactants was determined using surface tension measurements at three different temperatures.The synthesized surfactants showed a high tendency toward adsorption and micellization.Increasing the hydrophobic chain length of the synthesized surfactant increased its adsorption.Screening the synthesized cationic surfactants and their nano-form against bacteria and fungi showed that they are highly effective.The silver nanoparticles enhanced the biological activity of the synthesized cationic surfactants.展开更多
The lack of the early phase gelation property has limited the application of anhydrite as building material products. The use of additives, however, activates the anhydrite surfaces and results in the occurrence of ea...The lack of the early phase gelation property has limited the application of anhydrite as building material products. The use of additives, however, activates the anhydrite surfaces and results in the occurrence of early phase gelation. Under different surface modification conditions,the solubility of anhydrite in water has been measured and it has indicated a correlation between the anhydrite surface activity and its solubility in water. This relationship can be utilized to further study the anhydrite surface activation.展开更多
The Pt decorated Ni/C nanocatalysts were prepared for hydrogen oxidation reaction(HOR) in fuel cell.By regulating the contents of Pt and Ni in the catalyst,both the composition and the structure affected the electro...The Pt decorated Ni/C nanocatalysts were prepared for hydrogen oxidation reaction(HOR) in fuel cell.By regulating the contents of Pt and Ni in the catalyst,both the composition and the structure affected the electrochemical catalytic characteristics of the Pt-Ni/C catalysts.When the Pt mass content was 3.1% percent and that of Ni was 13.9% percent,the Pt-Ni/C-3 catalyst exhibited a larger electrochemically active surface area and a higher exchange current density toward HOR than those of pure supported platinum sample.Our study demonstrates a feasible approach for designing the more efficient catalysts with lower content of noble metal for HOR in fuel cell.展开更多
Gelatinase A (MMP-2) is considered to play a critical role in cell migration and invasion. The proteinase is secreted from the cell as an inactive zymogen. In vivo it is postulated that activation of progelationase A ...Gelatinase A (MMP-2) is considered to play a critical role in cell migration and invasion. The proteinase is secreted from the cell as an inactive zymogen. In vivo it is postulated that activation of progelationase A (proMMP-2) takes place on the cell surface mediated by membrane-type matrix metalloproteinases (MT-MMPs). Recent studies have demonstrated that proMMP-2 is recruited to the cell surface by interacting with tissue inhibitor of metalloproteinases-2 (TIMP-2) bound to MT1MMP by forming a ternary complex. bee MT1-MMP closely located to the ternary complex then activates proMMP-2 on the cell surface. MT1-MMP is found in cultured invasive cancer cells at the invadopodia. The MTMMP/TIMP-2/ MMP- 2 system t bus provides localized expression of proteolysis of the extracellular matrix required for cell migration.展开更多
YAG laser welding with surface activating flux has been investigated, and the influencing factors and mechanism are discussed. The results show that both surface activating flux and surface active element S have fanta...YAG laser welding with surface activating flux has been investigated, and the influencing factors and mechanism are discussed. The results show that both surface activating flux and surface active element S have fantastic effects on the YAG laser weld shape, that is to obviously increase the weld penetration and D/W ratio in various welding conditions. The mechanism is thought to be the change of weld pool surface tension temperature coefficient, thus, the change of fluid flow pattern in weld pool due to the flux.展开更多
Boron is a very promising and highly attractive fuel because of high calorific value. However, the practical applications in explosives and propellants of boron have been limited by long ignition delay time and low co...Boron is a very promising and highly attractive fuel because of high calorific value. However, the practical applications in explosives and propellants of boron have been limited by long ignition delay time and low combustion efficiency. Herein, nano-Al and graphene fluoride(GF) as surface activated materials are employed to coat boron(B) particles to improve ignition and combustion performance. The reaction heat of nano-Al coated B/KNO_(3)and GF coated B/KNO_(3)are 1116.83 J/g and 862.69 J/g, respectively, which are higher than that of pure B/KNO_(3)(823.39 J/g). The ignition delay time of B/KNO_(3)could be reduced through nano-Al coating. The shortest ignition delay time is only 75 ms for B coated with nano-Al of 8 wt%, which is much shorter than that of pure B/KNO_(3)(109 ms). However, the ignition delay time of B/KNOcoated with GF has been increased from 109 to 187 ms. B coated with GF and nano-Al shown significantly influence on the pressure output and flame structure of B/KNO_(3). Furthermore, the effects of B/O ratios on the pressure output and ignition delay time have been further fully studied. For B/KNO_(3)coated with nano-Al and GF, the highest pressures are 88 KPa and 59 KPa for B/O ratio of 4:6, and the minimum ignition delay time are 94 ms and 148 ms for B/O ratio of 7:3. Based on the above results, the reaction process of boron coated with GF and nano-Al has been proposed to understand combustion mechanism.展开更多
A novel C/Pb composite has been successfully prepared by electmless plating to reduce the hydrogenevolution and achieve the high reversibility of the anode of lead-carbon battery (LCB). The depositedlead on the surf...A novel C/Pb composite has been successfully prepared by electmless plating to reduce the hydrogenevolution and achieve the high reversibility of the anode of lead-carbon battery (LCB). The depositedlead on the surface of C/Pb composite was found to be uniform and adherent to carbon surface. Becauselead has been stuck on the surface of C/Pb composite, the embedded structure suppresses the hydrogenevolution of lead-carbon anode and strengthens the connection between carbon additive and sponge lead.Compared with the blank anode, the lead-carbon anode with C/Pb composite displays excellent charge-discharge reversibility, which is attributed to the good connection between carbon additives and leadthat has been stuck on the surface of C/Pb composite during the preparation process. The addition of CIPb composite maintains a solid anode structure with high specific surface area and power volume, andthereby, it plays a significant role in the highly reversible lead-carbon anode.展开更多
As reported in this paper, a strain of oil-degrading bacterium Sp - 5 - 3 was determined to belong to Enterobacteriaceae, which would be useful for microbial enhanced oil recovery (MEOR). The aim of our study was to g...As reported in this paper, a strain of oil-degrading bacterium Sp - 5 - 3 was determined to belong to Enterobacteriaceae, which would be useful for microbial enhanced oil recovery (MEOR). The aim of our study was to generate a mutant using low energy N+ beam implantation. With 10 keV of energy and 5.2× 1014 N+/cm2 of dose - the optimum condition, a mutant, S-34, was obtained, which had nearly a 5-fold higher surface and a 13-fold higher of emulsifica-tion activity than the wild type. The surface activity was measured by two methods, namely, a surface tension measuring instrument and a recording of the repulsive circle of the oil film; the emulsification activity was scaled through measuring the separating time of the oil-fermentation mixture. The metabolic acid was determined as methane by means of gas chromatography.展开更多
Five new zwitterionic surfactants with long chain alkyl betaine structure incorporated with hydroxylpropyl group have been synthesized. Their structures were identified by elemental analysis, IR (HNMR)-H-1, and (CNMR)...Five new zwitterionic surfactants with long chain alkyl betaine structure incorporated with hydroxylpropyl group have been synthesized. Their structures were identified by elemental analysis, IR (HNMR)-H-1, and (CNMR)-C-13. Surface tension experiments showed that these surfactants have higher surface activity than those without hydroxypropyl group. The values of CMC and gamma(CMC) of these surfactants have been determined.展开更多
SrTiO_3 nano-crystal samples with floccule or flake crystal morphology,which were indexed as a perovskite-type crystal structure based on the results of XRD and TEM,were successfully prepared by one-step liquid reacti...SrTiO_3 nano-crystal samples with floccule or flake crystal morphology,which were indexed as a perovskite-type crystal structure based on the results of XRD and TEM,were successfully prepared by one-step liquid reaction method.And the growth mechanism of the SrTiO_3 nano-crystals under the liquid condition with/without adding the surface active agent was investigated.It was found that adding the surface active agent contributes to the processing in which the ions gathering bodies transit to a more stable phase through the chemical reaction and form the flake SrTiO_3 nano-crystals.展开更多
Surface chemical properties of typical commercial coal-based activated cokes were characterized by Xray photoelectron spectroscopy(XPS) and acid-base titration, and then the influence of surface chemical properties on...Surface chemical properties of typical commercial coal-based activated cokes were characterized by Xray photoelectron spectroscopy(XPS) and acid-base titration, and then the influence of surface chemical properties on catalytic performance of activated cokes of NO reduction with NH3 was investigated in a fixed-bed quartz micro reactor at 150 ℃. The results indicate that the selective catalytic reduction(SCR) activity of activated cokes with the increase of its surface acidic sites and oxygen content,obviously, a correlation between catalytic activity and surface acidic sites content by titration has higher linearity than catalytic activity and surface oxygen content by XPS. While basic sites content by acid-base titration have not correlation with SCR activity. It has been proposed that surface basic sites content measured by titration may not be on adjacent of acidic surface oxides and then cannot form of NO2-like species, thus the reaction of reduction of NO with NH3 have been retarded.展开更多
The oxidation heat of coal is the direct reason leading to coal spontaneous combustion. When coal is exposed in oxygen atmosphere, the physical adsorption and chemisorption happened, and then which resulting chemical ...The oxidation heat of coal is the direct reason leading to coal spontaneous combustion. When coal is exposed in oxygen atmosphere, the physical adsorption and chemisorption happened, and then which resulting chemical reaction followed heat between coal and oxygen. Owing to the complexity and uncertain of molecular structure of coal,it was only reduced that bridge bonds, side chains and O 2 containing functional groups in coal may be prone to oxidation in last year, but not to deeply investigate into the structures and the type of the active radicals. In this paper, according to the last achievements in coal structure research, the hypomethylether bond, hypoalkyl bond of α carbon atom with hydroxyl and α carbon atom with hypomethy side chain and hypomethyl bonds linking up two aromatic hydrocarbon in bridge bonds, and methoxy,aldehyde and alkyls of α carbon atom with hydroxy in side bonds are inferred to be free radical easily to lead to oxidize coal under the ambient temperature and pressure. The order from strong to weak of oxide activation of the seven surface active groups is aldehyde side chains, hypomethylether bonds, hypoalkyl bonds of α carbon atom with hydroxyl, hypoalkyl bonds of α carbon atom with hypomethyl, hypomethyl bonds linking up two aromatic hydrocarbon,methoxy, alkyls side chains of α carbon atom with hydroxyl. Because of the two unsaturated molecular tracks of O 2, unpaired electron clouds of the part of surface active groups of coal enter molecular tracks of O 2 to lead to chemisorb on the conjugate effect and induced effect of surface active groups, and then chemical reaction followed heat happens in them. On the basis of change of bond energy, weighted average method is adopted to count the reaction heat value of each mol CO,CO 2 and H 2O. The property of coal spontaneous combustion is different for the different number and oxidability of the active structure in the coal resulting in the different oxidation heat.展开更多
Passive surface-wave utilization has been intensively studied as a means of compensating for the short-age of low-frequency information in active surface-wave measurement, In general, passive surface-wave methods cann...Passive surface-wave utilization has been intensively studied as a means of compensating for the short-age of low-frequency information in active surface-wave measurement, In general, passive surface-wave methods cannot provide phase velocities up to several tens of hertz; thus, active surface-wave methods are often required in order to increase the frequency range, To reduce the amount of field work, we pro-pose a strategy for a high-frequency passive surface-wave survey that imposes active sources during con-tinuous passive surface-wave observation; we call our strategy "mixed-source surface-wave (MSW) measurement," Short-duration (within 10 min) passive surface waves and mixed-source surface waves were recorded at three sites with different noise levels: namely, inside a school, along a road, and along a railway, Spectral analysis indicates that the high-frequency energy is improved by imposing active sources during continuous passive surface-wave observation, The spatial autocorrelation (SPAC) method and the multichannel analysis of passive surface waves (MAPS) method based on cross-correlations were performed on the recorded time sequences, The results demonstrate the flexibility and applicability of the proposed method for high-frequency phase velocity analysis, We suggest that it will be constructive to perform MSW measurement in a seismic investigation, rather than exclusively performing either active surface-wave measurement or passive surface-wave measurement,展开更多
In this work, surface activation of automotive polymers using atmospheric pressure plasmas was investigated. The aim was to increase the polar fraction of the surface energy of both plane and convex polymer devices wi...In this work, surface activation of automotive polymers using atmospheric pressure plasmas was investigated. The aim was to increase the polar fraction of the surface energy of both plane and convex polymer devices with a radius in the range of 30 mm. For this purpose, a fittable low temperature atmospheric pressure plasma source based on capacitively coupled multi-pin electrodes was set up and applied. Each single electrode generates a treatment spot of approximately 2 cm2 with a tunable power density of up to 1.4 W/cm2. The surface energy was evaluated by contact angle measurements. After treatment at a low energy density of 1.01 J/cm2, the polar fraction of the surface energy of the investigated polymers was increased by a factor of 3.3 to 132, depending on the polymer materials. It was shown that by applying the presented fittable plasma source, this effect is independent of the surface radius of the polymer sample.展开更多
文摘The magnetism and surface behaviour of Pt-Dy/γ-Al_2O_3 catalysts were studied respectively by means of a Faraday magnetic balance and the method of carbon disulfide.The ferromagnetic impurity in the support,γ-Al_2O_3,at low temperature was corrected for the first time.The magnetic susceptibilities of the cat- alysts follow the sequence in different stage of preparation:χ_(uncalcined)<χ_(calcined)<χ_(reduced). The magnetic susceptibilities of the catalysts decrease as they adsorb hydrogen,cyclohexane or benzene. There is a correlation between the aromatization yield of cyclohexane or heptane on these catalysts and the magnetic susceptibility of the catalysts.Since addition of Dy increases the number of adsorption sites and the relevant proportions of weak adsorption sites,the abilities of sulfur-resistance and cyclohexane dehydrogenation are improved.In Pt-Dy/γ-A:_2O_3 catalysts,Dy improves the aromatization activity and stability of the catalyst and plays the role of the electron promoter.
基金This work was supported by the Ministry of Education,Science and Technological Development of The Republic of Serbia(Contract No.451-03-68/2022-14/200135).
文摘A key feature that distinguishes cancer cells from all other cells is their capability to spread throughout the body.Although how cancer cells collectively migrate by following molecular rules which influence the state of cell-cell adhesion contacts has been comprehensively formulated,the impact of physical interactions on cell spreading remains less understood.Cumulative effects of physical interactions exist as the interplay between various physical parameters such as(1)tissue surface tension,(2)viscoelasticity caused by collective cell migration,and(3)solid stress accumulated in the cell aggregate core region.This review aims to point out the role of these physical parameters in cancer cell spreading by considering and comparing the rearrangement of various mono-cultured cancer and epithelial model systems such as the fusion of two cell aggregates.While epithelial cells undergo volumetric cell rearrangement driven by the tissue surface tension,which directs cell movement from the surface to the core region of two-aggregate systems,cancer cells rather perform surface cell rearrangement.Cancer cells migrate toward the surface of the two-aggregate system driven by the solid stress while the surface tension is significantly reduced.The solid stress,accumulated in the core region of the two-aggregate system,is capable of suppressing the movement of epithelial cells that can undergo the jamming state transition;however,this stress enhances the movement of cancer cells.We have focused here on the multi-scale rheological modeling approaches that aimed at reproducing and understanding these biological systems.
基金supported by the National Natural Science Foundation of China through its key project funding CNFS(Grant No.51236005)the Ministry of Science and Technology through its 973 National Key Project(Grant No.2013CB228401)
文摘The soot surface growth plays significant role on the soot mass accumulation,which starts with H(hydrogen)atom abstraction forming activated soot surface sites,and is followed by the acetylene addition process.In this study,the effect of the mixture inhomogeneity and combustion temperature on the soot surface activity and soot formation was investigated by developing a new multi-step phenomenological(MSP)soot model of diesel engines.A new detailed soot surface growth mechanism was proposed by correlation analysis of combustion parameters with soot formation.The inhomogeneity coefficient of soot surface activityαCH and the specific rate of soot surface growth R CH were derived to highlight the effect of inhomogeneity of mixture and combustion temperature on soot formation.The predicted diesel engine-out soot agreed well with experimental findings in wide ranges of combustion conditions.In the case of lower engine load with single fuel injection and higher EGR(exhaust gas recirculation)rate,it had quiet homogeneous mixtures before ignition when the combustion temperature dominated the soot surface activity.At medium engine load with multi-pulse fuel injections,it got mixture slightly stratified before ignition and revealed that the mixture inhomogeneity became more dominated on soot surface activity than the combustion temperature.An increased soot surface activity led to increased soot emission.Under the full engine loads with single fuel injection but quite high boost pressure over 0.4 MPa,it led to the combustion conditions of higher mixture density and higher mixture heat capacity,which benefits the mixture homogeneity.The decay rate of soot surface activity became lower due to the decreased combustion temperature and the soot surface activity decreased due to improved mixture homogeneity.In addition,the lowered intake oxygen concentration due to usage of EGR played a role to lower the specific rate of soot surface growth R CH,but to increase the soot surface activityαCH.
基金the Key Research and Development Project of the Ministry of Science and Technology of China(No.2022YFC3004900)。
文摘Fluorosurfactants are the key ingredients in the formulations of aqueous film-forming foams(AFFFs)for extinguishing flammable liquids,thus developing high-efficient and low-toxic fluorosurfactants is desirable in AFFFs application.Herein,a series of hyperbranched polymeric fluorosu rfactants(HPFs)were successfully synthesized through sequentially modifying hyperbranched polyethylenimine(PEI)with the hydrophilic poly(ethylene glycol)(PEG)chains and the hydrophobic C6/C4-based perfluoroalkyl chains,which were verified by FTIR,^(1)H-and^(19)F-NMR.The surface tensions of all the HPFs in water were measured,and the corresponding physicochemical parameters were interpreted.It was found that the surface activities of HPFs could be tuned through adjusting the ratio of PEG to perfluoroalkyl chains,the length of perfluoroalkyl chains,the molecular weight of PEI core,but not the PEG chain length.In the binary mixture of HPFs with the commercial small molecule fluorosurfactant Capstone^(TM)1157(C1157),a strong synergism led to the elevation of surface activity,which was attributed to the efficient encapsulation of C1157 guests by the compact hyperbranched HPFs as the hosts.The utilization of HPF/C1157 as fluorosurfactant ingredients in AFFF formulations could realize much higher fire-extinguishing efficiency towards flammable oils than the control AFFFs prepa red from the polymeric Capstone^(TM)1460 or the neat C1157.
基金National Natural Science Foundation of China(No.22078207)Sichuan Science and Technology Program(2021ZHCG0042)Fundamental Research Funds for the Central Universities(China).
文摘Mixing hydrocarbon surfactants with fluorocarbon surfactants is still an important strategy to improve the economic benefits and performances of fluorocarbon surfactants and expand their range of application.Herein,we prepared a novel kind of hydrocarbon-fluorocarbon surfactant mixtures via mixing a cationic surfactant,cetyltrimethylammonium bromide(CTAB),with a tri-block nonionic short-chain fluorocarbon surfactant(F_(9)EG_(13)F_(9))in aqueous solution.The results showed that adding a small CTAB amount to F_(9)EG_(13)F_(9)(the molar fraction of CTAB in the mixture(x_(1))was 0.2)could greatly reduce its critical micelle concentrations(cmc)from 0.408mmol/L to 0.191 mmol/L.At this x_(1),the contact angle of the mixture was the minimum(57.7°)at 100 s on polytetrafluoroethylene film,which was even lower than that of F_(9)EG_(13)F_(9).Besides,CTAB/F_(9)EG_(13)F_(9) mixtures possessed better colloidal stability and solubilization ability toward hydrophobic dye(SudanІ)than F_(9)EG_(13)F_(9).The outstanding performances of binary surfactant mixtures benefited from the non-ideal mixing and strong synergistic effect evidence that CTAB/F_(9)EG_(13)F_(9) surfactant mixtures could be used in practical applications instead of individual F_(9)EG_(13)F_(9),thereby reducing the used cost of F_(9)EG_(13)F_(9).
基金supported by the National Natural Science Foundation of China(51502221)~~
文摘α‐,β‐,δ‐,andγ‐MnO2nanocrystals are successfully prepared.We then evaluated the NH3selective catalytic reduction(SCR)performance of the MnO2catalysts with different phases.The NOx conversion efficiency decreased in the order:γ‐MnO2>α‐MnO2>δ‐MnO2>β‐MnO2.The NOx conversion with the use ofγ‐MnO2andα‐MnO2catalysts reached90%in the temperature range of140–200°C,while that based onβ‐MnO2reached only40%at200°C.Theγ‐MnO2andα‐MnO2nanowire crystal morphologies enabled good dispersion of the catalysts and resulted in a relatively high specific surface area.We found thatγ‐MnO2andα‐MnO2possessed stronger reducing abilities and more and stronger acidic sites than the other catalysts.In addition,more chemisorbed oxygen existed on the surface of theγ‐MnO2andα‐MnO2catalysts.Theγ‐MnO2andα‐MnO2catalysts showed excellent performance in the low‐temperature SCR of NO to N2with NH3.
文摘The chemical structure of newly synthesized cationic surfactants based on Schiff base was confirmed using Fourier transform infrared spectroscopy,proton nuclear magnetic resonance spectroscopy,and mass spectroscopy.The synthesized surfactants were used in the synthesis of silver nanoparticles by a simple one-step method.The silver nanoparticle(AgNPs) formation was confirmed using transmission electron microscopy(TEM),electron diffraction(SAED),dynamic light scattering(DLS),and energy dispersive X-ray spectroscopy(EDX).The structure of the surfactant played an important role in the synthesis process.Increasing the hydrophobic chain length,the stability,and the amount of surfactant increased the quantity of AgNPs formed.The surface activity of the synthesized cationic surfactants was determined using surface tension measurements at three different temperatures.The synthesized surfactants showed a high tendency toward adsorption and micellization.Increasing the hydrophobic chain length of the synthesized surfactant increased its adsorption.Screening the synthesized cationic surfactants and their nano-form against bacteria and fungi showed that they are highly effective.The silver nanoparticles enhanced the biological activity of the synthesized cationic surfactants.
文摘The lack of the early phase gelation property has limited the application of anhydrite as building material products. The use of additives, however, activates the anhydrite surfaces and results in the occurrence of early phase gelation. Under different surface modification conditions,the solubility of anhydrite in water has been measured and it has indicated a correlation between the anhydrite surface activity and its solubility in water. This relationship can be utilized to further study the anhydrite surface activation.
基金supported by the National Natural Science Foundation of China (21476145)~~
文摘The Pt decorated Ni/C nanocatalysts were prepared for hydrogen oxidation reaction(HOR) in fuel cell.By regulating the contents of Pt and Ni in the catalyst,both the composition and the structure affected the electrochemical catalytic characteristics of the Pt-Ni/C catalysts.When the Pt mass content was 3.1% percent and that of Ni was 13.9% percent,the Pt-Ni/C-3 catalyst exhibited a larger electrochemically active surface area and a higher exchange current density toward HOR than those of pure supported platinum sample.Our study demonstrates a feasible approach for designing the more efficient catalysts with lower content of noble metal for HOR in fuel cell.
文摘Gelatinase A (MMP-2) is considered to play a critical role in cell migration and invasion. The proteinase is secreted from the cell as an inactive zymogen. In vivo it is postulated that activation of progelationase A (proMMP-2) takes place on the cell surface mediated by membrane-type matrix metalloproteinases (MT-MMPs). Recent studies have demonstrated that proMMP-2 is recruited to the cell surface by interacting with tissue inhibitor of metalloproteinases-2 (TIMP-2) bound to MT1MMP by forming a ternary complex. bee MT1-MMP closely located to the ternary complex then activates proMMP-2 on the cell surface. MT1-MMP is found in cultured invasive cancer cells at the invadopodia. The MTMMP/TIMP-2/ MMP- 2 system t bus provides localized expression of proteolysis of the extracellular matrix required for cell migration.
文摘YAG laser welding with surface activating flux has been investigated, and the influencing factors and mechanism are discussed. The results show that both surface activating flux and surface active element S have fantastic effects on the YAG laser weld shape, that is to obviously increase the weld penetration and D/W ratio in various welding conditions. The mechanism is thought to be the change of weld pool surface tension temperature coefficient, thus, the change of fluid flow pattern in weld pool due to the flux.
基金supported by the National Natural Science Foundation of China (11872341 and 22075261)。
文摘Boron is a very promising and highly attractive fuel because of high calorific value. However, the practical applications in explosives and propellants of boron have been limited by long ignition delay time and low combustion efficiency. Herein, nano-Al and graphene fluoride(GF) as surface activated materials are employed to coat boron(B) particles to improve ignition and combustion performance. The reaction heat of nano-Al coated B/KNO_(3)and GF coated B/KNO_(3)are 1116.83 J/g and 862.69 J/g, respectively, which are higher than that of pure B/KNO_(3)(823.39 J/g). The ignition delay time of B/KNO_(3)could be reduced through nano-Al coating. The shortest ignition delay time is only 75 ms for B coated with nano-Al of 8 wt%, which is much shorter than that of pure B/KNO_(3)(109 ms). However, the ignition delay time of B/KNOcoated with GF has been increased from 109 to 187 ms. B coated with GF and nano-Al shown significantly influence on the pressure output and flame structure of B/KNO_(3). Furthermore, the effects of B/O ratios on the pressure output and ignition delay time have been further fully studied. For B/KNO_(3)coated with nano-Al and GF, the highest pressures are 88 KPa and 59 KPa for B/O ratio of 4:6, and the minimum ignition delay time are 94 ms and 148 ms for B/O ratio of 7:3. Based on the above results, the reaction process of boron coated with GF and nano-Al has been proposed to understand combustion mechanism.
基金the financial support provided by the National Natural Science Foundation of China (No.21573093)the National Key Research and Development Program (No.2017YFB0307501)Guangdong Innovative and Entrepreneurial Research Team Program (No.2013C092)
文摘A novel C/Pb composite has been successfully prepared by electmless plating to reduce the hydrogenevolution and achieve the high reversibility of the anode of lead-carbon battery (LCB). The depositedlead on the surface of C/Pb composite was found to be uniform and adherent to carbon surface. Becauselead has been stuck on the surface of C/Pb composite, the embedded structure suppresses the hydrogenevolution of lead-carbon anode and strengthens the connection between carbon additive and sponge lead.Compared with the blank anode, the lead-carbon anode with C/Pb composite displays excellent charge-discharge reversibility, which is attributed to the good connection between carbon additives and leadthat has been stuck on the surface of C/Pb composite during the preparation process. The addition of CIPb composite maintains a solid anode structure with high specific surface area and power volume, andthereby, it plays a significant role in the highly reversible lead-carbon anode.
基金The project supported by the Knowledge Innovation Project of the Chinese Academy of Sciences(No. KSCX2-SW-324)
文摘As reported in this paper, a strain of oil-degrading bacterium Sp - 5 - 3 was determined to belong to Enterobacteriaceae, which would be useful for microbial enhanced oil recovery (MEOR). The aim of our study was to generate a mutant using low energy N+ beam implantation. With 10 keV of energy and 5.2× 1014 N+/cm2 of dose - the optimum condition, a mutant, S-34, was obtained, which had nearly a 5-fold higher surface and a 13-fold higher of emulsifica-tion activity than the wild type. The surface activity was measured by two methods, namely, a surface tension measuring instrument and a recording of the repulsive circle of the oil film; the emulsification activity was scaled through measuring the separating time of the oil-fermentation mixture. The metabolic acid was determined as methane by means of gas chromatography.
文摘Five new zwitterionic surfactants with long chain alkyl betaine structure incorporated with hydroxylpropyl group have been synthesized. Their structures were identified by elemental analysis, IR (HNMR)-H-1, and (CNMR)-C-13. Surface tension experiments showed that these surfactants have higher surface activity than those without hydroxypropyl group. The values of CMC and gamma(CMC) of these surfactants have been determined.
文摘SrTiO_3 nano-crystal samples with floccule or flake crystal morphology,which were indexed as a perovskite-type crystal structure based on the results of XRD and TEM,were successfully prepared by one-step liquid reaction method.And the growth mechanism of the SrTiO_3 nano-crystals under the liquid condition with/without adding the surface active agent was investigated.It was found that adding the surface active agent contributes to the processing in which the ions gathering bodies transit to a more stable phase through the chemical reaction and form the flake SrTiO_3 nano-crystals.
基金the High Technology Research and Development Program of China(No.2011AA060803)the Beijing Key Laboratory Annual Program(No.Z121103009212039)
文摘Surface chemical properties of typical commercial coal-based activated cokes were characterized by Xray photoelectron spectroscopy(XPS) and acid-base titration, and then the influence of surface chemical properties on catalytic performance of activated cokes of NO reduction with NH3 was investigated in a fixed-bed quartz micro reactor at 150 ℃. The results indicate that the selective catalytic reduction(SCR) activity of activated cokes with the increase of its surface acidic sites and oxygen content,obviously, a correlation between catalytic activity and surface acidic sites content by titration has higher linearity than catalytic activity and surface oxygen content by XPS. While basic sites content by acid-base titration have not correlation with SCR activity. It has been proposed that surface basic sites content measured by titration may not be on adjacent of acidic surface oxides and then cannot form of NO2-like species, thus the reaction of reduction of NO with NH3 have been retarded.
文摘The oxidation heat of coal is the direct reason leading to coal spontaneous combustion. When coal is exposed in oxygen atmosphere, the physical adsorption and chemisorption happened, and then which resulting chemical reaction followed heat between coal and oxygen. Owing to the complexity and uncertain of molecular structure of coal,it was only reduced that bridge bonds, side chains and O 2 containing functional groups in coal may be prone to oxidation in last year, but not to deeply investigate into the structures and the type of the active radicals. In this paper, according to the last achievements in coal structure research, the hypomethylether bond, hypoalkyl bond of α carbon atom with hydroxyl and α carbon atom with hypomethy side chain and hypomethyl bonds linking up two aromatic hydrocarbon in bridge bonds, and methoxy,aldehyde and alkyls of α carbon atom with hydroxy in side bonds are inferred to be free radical easily to lead to oxidize coal under the ambient temperature and pressure. The order from strong to weak of oxide activation of the seven surface active groups is aldehyde side chains, hypomethylether bonds, hypoalkyl bonds of α carbon atom with hydroxyl, hypoalkyl bonds of α carbon atom with hypomethyl, hypomethyl bonds linking up two aromatic hydrocarbon,methoxy, alkyls side chains of α carbon atom with hydroxyl. Because of the two unsaturated molecular tracks of O 2, unpaired electron clouds of the part of surface active groups of coal enter molecular tracks of O 2 to lead to chemisorb on the conjugate effect and induced effect of surface active groups, and then chemical reaction followed heat happens in them. On the basis of change of bond energy, weighted average method is adopted to count the reaction heat value of each mol CO,CO 2 and H 2O. The property of coal spontaneous combustion is different for the different number and oxidability of the active structure in the coal resulting in the different oxidation heat.
文摘Passive surface-wave utilization has been intensively studied as a means of compensating for the short-age of low-frequency information in active surface-wave measurement, In general, passive surface-wave methods cannot provide phase velocities up to several tens of hertz; thus, active surface-wave methods are often required in order to increase the frequency range, To reduce the amount of field work, we pro-pose a strategy for a high-frequency passive surface-wave survey that imposes active sources during con-tinuous passive surface-wave observation; we call our strategy "mixed-source surface-wave (MSW) measurement," Short-duration (within 10 min) passive surface waves and mixed-source surface waves were recorded at three sites with different noise levels: namely, inside a school, along a road, and along a railway, Spectral analysis indicates that the high-frequency energy is improved by imposing active sources during continuous passive surface-wave observation, The spatial autocorrelation (SPAC) method and the multichannel analysis of passive surface waves (MAPS) method based on cross-correlations were performed on the recorded time sequences, The results demonstrate the flexibility and applicability of the proposed method for high-frequency phase velocity analysis, We suggest that it will be constructive to perform MSW measurement in a seismic investigation, rather than exclusively performing either active surface-wave measurement or passive surface-wave measurement,
基金supported by the European Regional Development Funds(EFRE)and the Workgroup Innovative Projects of Lower Saxony(AGiP) in the Frame of the Lower Saxony Innovation Network for Plasma Technology(NIP),Project Funding Reference Number W2-80029388
文摘In this work, surface activation of automotive polymers using atmospheric pressure plasmas was investigated. The aim was to increase the polar fraction of the surface energy of both plane and convex polymer devices with a radius in the range of 30 mm. For this purpose, a fittable low temperature atmospheric pressure plasma source based on capacitively coupled multi-pin electrodes was set up and applied. Each single electrode generates a treatment spot of approximately 2 cm2 with a tunable power density of up to 1.4 W/cm2. The surface energy was evaluated by contact angle measurements. After treatment at a low energy density of 1.01 J/cm2, the polar fraction of the surface energy of the investigated polymers was increased by a factor of 3.3 to 132, depending on the polymer materials. It was shown that by applying the presented fittable plasma source, this effect is independent of the surface radius of the polymer sample.