The hierarchical structure of the composite cathodes brings in significant chemical complexity related to the interfaces,such as cathode electrolyte interphase.These interfaces account for only a small fraction of the...The hierarchical structure of the composite cathodes brings in significant chemical complexity related to the interfaces,such as cathode electrolyte interphase.These interfaces account for only a small fraction of the volume and mass,they could,however,have profound impacts on the cell-level electrochemistry.As the investigation of these interfaces becomes a crucial topic in the battery research,there is a need to properly study the surface chemistry,particularly to eliminate the biased,incomplete characterization provided by techniques that assume the homogeneous surface chemistry.Herein,we utilize nano-resolution spatially-resolved x-ray spectroscopic tools to probe the heterogeneity of the surface chemistry on LiNi0.8Mn0.1Co0.1O2 layered cathode secondary particles.Informed by the nano-resolution mapping of the Ni valance state,which serves as a measurement of the local surface chemistry,we construct a conceptual model to elucidate the electrochemical consequence of the inhomogeneous local impedance over the particle surface.Going beyond the implication in battery science,our work highlights a balance between the high-resolution probing the local chemistry and the statistical representativeness,which is particularly vital in the study of the highly complex material systems.展开更多
Development of reaction-tailored electrocatalysts is becoming increasingly important as energy and environment are among key issues governing our sustainable future.Electrocatalysts are inherently optimized for applic...Development of reaction-tailored electrocatalysts is becoming increasingly important as energy and environment are among key issues governing our sustainable future.Electrocatalysts are inherently optimized for application towards reactions of interest in renewable energy,such as those involved in water splitting and artificial photosynthesis,owing to its energy efficiency,simple fabrication,and ease of operation.In this view,it is important to secure logical design principles for the synthesis of electrocatalysts for various reactions of interest,and also understand their catalytic mechanisms in the respective reactions for improvements in further iterations.In this review,we introduce several key methods of scanning electrochemical microscopy(SECM)in its applications towards electrocatalysis.A brief history and a handful of seminal works in the SECM field is introduced in advancing the synthetic designs of electrocatalysts and elucidation of the operating mechanism.New developments in nano-sizing of the electrodes in attempts for improved spatial resolution of SECM is also introduced,and the application of nanoelectrodes towards the investigation of formerly inaccessible single catalytic entities is shared.展开更多
The emission and surface characteristics of a dispenser cathode coated with Re arestudied.It is found that the dispenser cathode coated with Re has both higher current densityand more uniform distribution of emission ...The emission and surface characteristics of a dispenser cathode coated with Re arestudied.It is found that the dispenser cathode coated with Re has both higher current densityand more uniform distribution of emission than the S-type cathode.The Auger images of Bashow that the Ba distribution on the surface of the cathode coated with Re is more uniform thanthat on the surface of the S-type cathode.The analytical results by XPS and low energy AESshow that the Ba on the surface of the cathode coated with Re has stronger metallic propertythan that on the surface of the S type cathode.展开更多
A two-wavelength pyrometry device using ordinary array CCD (charge coupled device) to collect the ra- diation data in the horizontal and vertical directions has been developed for measuring the cathode surface tempera...A two-wavelength pyrometry device using ordinary array CCD (charge coupled device) to collect the ra- diation data in the horizontal and vertical directions has been developed for measuring the cathode surface temperature during the arc discharge. Analyses of experimental results show that the device can make the measurement of the cathode surface temperature feasible. The cathode surface temperatures measured are lower than the melting point of tungsten (3653 K), and the arc current, cathode diameter, and the cathode length are the main influencing factors of the cathode surface temperature.展开更多
The paper presents a study of surface texture character-ization of knitted fabrics during simulated wear based onlaser-scanned profiles.The three-dimensional profilewas obtained by scanning the fabric surface using th...The paper presents a study of surface texture character-ization of knitted fabrics during simulated wear based onlaser-scanned profiles.The three-dimensional profilewas obtained by scanning the fabric surface using the la-ser trlangulation technique.The analytical techniquesused to derive quantitative parameters Included statisticalanalysis,fractal analysis,and Fourler analysis.展开更多
The surface plasmon resonance(SPR)biosensor technology is a novel optical analysis method for studying intermolecular interactions.Owing to in-depth research on traditional Chinese medicine(TCM)in recent years,compreh...The surface plasmon resonance(SPR)biosensor technology is a novel optical analysis method for studying intermolecular interactions.Owing to in-depth research on traditional Chinese medicine(TCM)in recent years,comprehensive and specific identification of components and target interactions has become key yet difficult tasks.SPR has gradually been used to analyze the active components of TCM owing to its high sensitivity,strong exclusivity,large flux,and real-time monitoring capabilities.This review sought to briefly introduce the active components of TCM and the principle of SPR,and provide historical and new insights into the application of SPR in the analysis of the active components of TCM.展开更多
The surface of Thar coal has been characterized by spectroscopic, microscopic and chemical methods using atomic absorption spectroscopy, fourier transform infrared analysis, X-ray diffraction, scanned electron microsc...The surface of Thar coal has been characterized by spectroscopic, microscopic and chemical methods using atomic absorption spectroscopy, fourier transform infrared analysis, X-ray diffraction, scanned electron microscopy and pH titration. The samples contained high moisture, low volatile and low to moderate sulfur content and ranked as lignite (heating value 2541 - 4289 btu/lb on moist, mineral-matter-free basis). Scanned electron micrographs show porous matrix with calcium, potassium or sodium minerals. Fourier transform infrared analysis confirmed the presence of aluminum, silica and hydrate mineral constituents also. The spectra showed C=C aromatic groups at 1604 - 1609 cm-1. Phenolic ester and carboxylic acid are identified by C=O stretching vibration peaks at 1702 cm-1. The peaks of quartz and kaolinite were observed at 900 - 1100 cm-1. Point of zero charge of Thar coal has been estimated as 6.00 to 6.27 through adsorption of H+ and OH- ions by suspending coal particles in aqueous electrolyte solution. Oxygen containing functional groups, mineral matter, and metal oxides are found to have a remarkable impact on point of zero charge. The surface characterization study will be helpful in the separation of hydrophilic impurities during coal preparation processes considering pzc as the controlling展开更多
基金Project supported by U.S.Department of Energy,Office of Science,Office of Basic Energy Sciences under Contract No.DE-AC02-76SF00515National Science Foundation under Grant No.DMR-1832613.
文摘The hierarchical structure of the composite cathodes brings in significant chemical complexity related to the interfaces,such as cathode electrolyte interphase.These interfaces account for only a small fraction of the volume and mass,they could,however,have profound impacts on the cell-level electrochemistry.As the investigation of these interfaces becomes a crucial topic in the battery research,there is a need to properly study the surface chemistry,particularly to eliminate the biased,incomplete characterization provided by techniques that assume the homogeneous surface chemistry.Herein,we utilize nano-resolution spatially-resolved x-ray spectroscopic tools to probe the heterogeneity of the surface chemistry on LiNi0.8Mn0.1Co0.1O2 layered cathode secondary particles.Informed by the nano-resolution mapping of the Ni valance state,which serves as a measurement of the local surface chemistry,we construct a conceptual model to elucidate the electrochemical consequence of the inhomogeneous local impedance over the particle surface.Going beyond the implication in battery science,our work highlights a balance between the high-resolution probing the local chemistry and the statistical representativeness,which is particularly vital in the study of the highly complex material systems.
文摘Development of reaction-tailored electrocatalysts is becoming increasingly important as energy and environment are among key issues governing our sustainable future.Electrocatalysts are inherently optimized for application towards reactions of interest in renewable energy,such as those involved in water splitting and artificial photosynthesis,owing to its energy efficiency,simple fabrication,and ease of operation.In this view,it is important to secure logical design principles for the synthesis of electrocatalysts for various reactions of interest,and also understand their catalytic mechanisms in the respective reactions for improvements in further iterations.In this review,we introduce several key methods of scanning electrochemical microscopy(SECM)in its applications towards electrocatalysis.A brief history and a handful of seminal works in the SECM field is introduced in advancing the synthetic designs of electrocatalysts and elucidation of the operating mechanism.New developments in nano-sizing of the electrodes in attempts for improved spatial resolution of SECM is also introduced,and the application of nanoelectrodes towards the investigation of formerly inaccessible single catalytic entities is shared.
文摘The emission and surface characteristics of a dispenser cathode coated with Re arestudied.It is found that the dispenser cathode coated with Re has both higher current densityand more uniform distribution of emission than the S-type cathode.The Auger images of Bashow that the Ba distribution on the surface of the cathode coated with Re is more uniform thanthat on the surface of the S-type cathode.The analytical results by XPS and low energy AESshow that the Ba on the surface of the cathode coated with Re has stronger metallic propertythan that on the surface of the S type cathode.
文摘A two-wavelength pyrometry device using ordinary array CCD (charge coupled device) to collect the ra- diation data in the horizontal and vertical directions has been developed for measuring the cathode surface temperature during the arc discharge. Analyses of experimental results show that the device can make the measurement of the cathode surface temperature feasible. The cathode surface temperatures measured are lower than the melting point of tungsten (3653 K), and the arc current, cathode diameter, and the cathode length are the main influencing factors of the cathode surface temperature.
文摘The paper presents a study of surface texture character-ization of knitted fabrics during simulated wear based onlaser-scanned profiles.The three-dimensional profilewas obtained by scanning the fabric surface using the la-ser trlangulation technique.The analytical techniquesused to derive quantitative parameters Included statisticalanalysis,fractal analysis,and Fourler analysis.
基金This work was supported by grants from the National Natural Science Foundation of China(Grant No.:82072142)the National Key R&D Program of China(Grant No.:2020YFC2005502)the Science and Technology Commission of Shanghai Municipality(Grant No.:19401900500).
文摘The surface plasmon resonance(SPR)biosensor technology is a novel optical analysis method for studying intermolecular interactions.Owing to in-depth research on traditional Chinese medicine(TCM)in recent years,comprehensive and specific identification of components and target interactions has become key yet difficult tasks.SPR has gradually been used to analyze the active components of TCM owing to its high sensitivity,strong exclusivity,large flux,and real-time monitoring capabilities.This review sought to briefly introduce the active components of TCM and the principle of SPR,and provide historical and new insights into the application of SPR in the analysis of the active components of TCM.
文摘The surface of Thar coal has been characterized by spectroscopic, microscopic and chemical methods using atomic absorption spectroscopy, fourier transform infrared analysis, X-ray diffraction, scanned electron microscopy and pH titration. The samples contained high moisture, low volatile and low to moderate sulfur content and ranked as lignite (heating value 2541 - 4289 btu/lb on moist, mineral-matter-free basis). Scanned electron micrographs show porous matrix with calcium, potassium or sodium minerals. Fourier transform infrared analysis confirmed the presence of aluminum, silica and hydrate mineral constituents also. The spectra showed C=C aromatic groups at 1604 - 1609 cm-1. Phenolic ester and carboxylic acid are identified by C=O stretching vibration peaks at 1702 cm-1. The peaks of quartz and kaolinite were observed at 900 - 1100 cm-1. Point of zero charge of Thar coal has been estimated as 6.00 to 6.27 through adsorption of H+ and OH- ions by suspending coal particles in aqueous electrolyte solution. Oxygen containing functional groups, mineral matter, and metal oxides are found to have a remarkable impact on point of zero charge. The surface characterization study will be helpful in the separation of hydrophilic impurities during coal preparation processes considering pzc as the controlling