A lunar geologic map at a scale of 1:5000000 was finished in the 1970s by the National Aeronautics and Space Administration, U.S U.S. Geological Survey. Department of the Interior, Till now, the landform classificati...A lunar geologic map at a scale of 1:5000000 was finished in the 1970s by the National Aeronautics and Space Administration, U.S U.S. Geological Survey. Department of the Interior, Till now, the landform classification system and lunar morphologic mapping have not been clarified. The work aims to put forward a new landform classification system and to obtain index and map in the Sheet H010. Some key morphologic features of lunar surface were compared with those of the Earth. This research is very important for whole lunar morphologic mapping and unraveling evolutionary progress.展开更多
Morphology of hydraulic fracture surface has significant effects on oil and gas flow,proppant migration and fracture closure,which plays an important role in oil and gas fracturing stimulation.In this paper,we analyze...Morphology of hydraulic fracture surface has significant effects on oil and gas flow,proppant migration and fracture closure,which plays an important role in oil and gas fracturing stimulation.In this paper,we analyzed the fracture surface characteristics induced by supercritical carbon dioxide(SC-CO_(2))and water in open-hole and perforation completion conditions under triaxial stresses.A simple calculation method was proposed to quantitatively analyze the fracture surface area and roughness in macro-level based on three-dimensional(3D)scanning data.In micro-level,scanning electron micrograph(SEM)was used to analyze the features of fracture surface.The results showed that the surface area of the induced fracture increases with perforation angle for both SC-CO_(2)and water fracturing,and the surface area of SC-CO_(2)-induced fracture is 6.49%e58.57%larger than that of water-induced fracture.The fractal dimension and surface roughness of water-induced fractures increase with the increase in perforation angle,while those of SC-CO_(2)-induced fractures decrease with the increasing perforation angle.A considerable number of microcracks and particle peeling pits can be observed on SC-CO_(2)-induced fracture surface while there are more flat particle surfaces in water-induced fracture surface through SEM images,indicating that fractures tend to propagate along the boundary of the particle for SC-CO_(2)fracturing while water-induced fractures prefer to cut through particles.These findings are of great significance for analyzing fracture mechanism and evaluating fracturing stimulation performance.展开更多
Land surface changes effect the regional climate due to the complex coupling of land-atmosphere interactions. From 1995 to 2000, a decrease in the vegetation density and an increase in ground-level thermodynamic activ...Land surface changes effect the regional climate due to the complex coupling of land-atmosphere interactions. From 1995 to 2000, a decrease in the vegetation density and an increase in ground-level thermodynamic activity has been documented by multiple data sources in Northwest China, including meteorological, reanalysis from European Centre for Medium-Range Weather Forecasts (ECMWF), National Oceanic and Atmospheric Administration's (NOAA) Advanced Very High Resolution Radiometer (AVHRR) and TIROS Operational Vertical Sounder (TOVS) satellite remote sensing data. As the ground-level thermodynamic activity increases, humid air from the surrounding regions converge toward desert (and semi-desert) regions, causing areas with high vegetation cover to become gradually more arid. Furthermore, land surface changes in Northwest China are responsible for a decrease in total cloud cover, a decline in the fraction of low and middle clouds, an increase in high cloud cover (due to thermodynamic activity) and other regional climatic adaptations. It is proposed that, beginning in 1995, these cloud cover changes contributed to a "green- house" effect, leading to the rapid air temperature increases and other regional climate impacts that have been observed over Northwest China.展开更多
A new method of extraction of blend surface feature is presented. It contains two steps: segmentation and recovery of parametric representation of the blend. The segmentation separates the points in the blend region f...A new method of extraction of blend surface feature is presented. It contains two steps: segmentation and recovery of parametric representation of the blend. The segmentation separates the points in the blend region from the rest of the input point cloud with the processes of sampling point data, estimation of local surface curvature properties and comparison of maximum curvature values. The recovery of parametric representation generates a set of profile curves by marching throughout the blend and fitting cylinders. Compared with the existing approaches of blend surface feature extraction, the proposed method reduces the requirement of user interaction and is capable of extracting blend surface with either constant radius or variable radius. Application examples are presented to verify the proposed method.展开更多
A principal direction Gaussian image (PDGI)-based algorithm is proposed to extract the regular swept surface from point cloud. Firstly, the PDGI of the regular swept surface is constructed from point cloud, then the...A principal direction Gaussian image (PDGI)-based algorithm is proposed to extract the regular swept surface from point cloud. Firstly, the PDGI of the regular swept surface is constructed from point cloud, then the bounding box of the Gaussian sphere is uniformly partitioned into a number of small cubes (3D grids) and the PDGI points on the Gaussian sphere are associated with the corresponding 3D grids. Secondly, cluster analysis technique is used to sort out a group of 3D grids containing more PDGI points among the 3D grids. By the connected-region growing algorithm, the congregation point or the great circle is detected from the 3D grids. Thus the translational direction is determined by the congregation point and the direction of the rotational axis is determined by the great circle. In addition, the positional point of the rotational axis is obtained by the intersection of all the projected normal lines of the rotational surface on the plane being perpendicular to the estimated direction of the rotational axis. Finally, a pattem search method is applied to optimize the translational direction and the rotational axis. Some experiments are used to illustrate the feasibility of the above algorithm.展开更多
Several remotely sensed sea surface salinity(SSS) retrievals with various resolutions from the soil moisture and ocean salinity(SMOS) and Aquarius/SAC-D missions are applied as inputs for retrieving salinity profi...Several remotely sensed sea surface salinity(SSS) retrievals with various resolutions from the soil moisture and ocean salinity(SMOS) and Aquarius/SAC-D missions are applied as inputs for retrieving salinity profiles(S) using multilinear regressions. The performance is evaluated using a total root mean square(RMS) error, different error sources, and the feature resolutions of the retrieved S fields. In the mixed layer of the salinity, the SSS-S regression coefficients are uniformly large. The SSS inputs yield smaller RMS errors in the retrieved S with respect to Argo profiles as their spatial or temporal resolution decreases. The projected SSS errors are dominant, and the retrieved S values are more accurate than those of climatology in the tropics except for the tropical Atlantic, where the regression errors are abnormally large. Below that level, because of the influence of a sea level anomaly, the areas of high-accuracy S values shift to higher latitudes except in the high-latitude southern oceans, where the projected SSS errors are abnormally large. A spectral analysis suggests that the CATDS-0.25° results are much noisier and that the BEC-L4-0.25° results are much smoother than those of the other retrievals. Aquarius-CAP-1° generates the smallest RMS errors, and Aquarius-V2-1° performs well in depicting large-scale phenomena. BEC-L3-0.25°,which has small RMS errors and remarkable mesoscale energy, is the best fit for portraying mesoscale features in the SSS and retrieved S fields. The current priority for retrieving S is to improve the reliability of satellite SSS especially at middle and high latitudes, by developing advanced algorithms, combining both sensors, or weighing between accuracy and resolutions.展开更多
The PZT thin films were prepared on (111)- Pt/Ti/SiO2/Si substrates by sol-gel method, and lead acetate [Pb(CH3COO)2], zirconium nitrate [Zr(NO3)4] were used as raw materials. The X-ray diffractometer (XRD) an...The PZT thin films were prepared on (111)- Pt/Ti/SiO2/Si substrates by sol-gel method, and lead acetate [Pb(CH3COO)2], zirconium nitrate [Zr(NO3)4] were used as raw materials. The X-ray diffractometer (XRD) and scanning electron microscopy (SEM) were used to characterize the phase structure and surface morphology of the films annealed at 650 ~C but with different holding time. Ferroelectric and dielectric properties of the films were measured by the ferroelectric tester and the precision impedance analyzer, respectively. The PZT thin films were constructed with epoxy resin as a composite structure, and the damping properties of the composite were tested by dynamic mechanical analyzer (DMA). The results show that the films annealed for 90 minutes present a dense and compact crystal arrangement on the surface; moreover, the films also achieve their best electric quality. At the same time, the largest damping loss factor of the composite constructed with the 90 mins-annealed film shows peak value of 0.9, hi^her than the pure epoxy resin.展开更多
Aiming at the problem that the total pressure loss of the flue of the electric precipitator of the 350 MW unit of a power plant to the inlet of the draft fan is too large,the numerical simulation software Fluent and t...Aiming at the problem that the total pressure loss of the flue of the electric precipitator of the 350 MW unit of a power plant to the inlet of the draft fan is too large,the numerical simulation software Fluent and the standard k-εmodel was used to simulate the flue,the results show that the main part of the flue mean total pressure loss is derived from the confluence header and elbow.In order to reduce the loss and consider the cost of transformation,the concept of twodimensional feature surface is established,gradually proposed three sets of flue transformation program and analysis of the flue transformation program drag reduction effect,the results show that the total reduction of the flue can be reduced from 486 Pa to 89 Pa and the reduction rate is 81.7%,which is the best solution;The concept of two-dimensional feature plane is helpful for quick condensing of flue;Double V-type structure of the convergence of the box has a better drag reduction effect.展开更多
The present paper covers surface texture features of the catalysts for the oxidation of o-xylene to phthalic anhydride (PA) investigated by the Image Texture Analysis Technique and obviously corresponding relationship...The present paper covers surface texture features of the catalysts for the oxidation of o-xylene to phthalic anhydride (PA) investigated by the Image Texture Analysis Technique and obviously corresponding relationships between the catalyst activity and its texture features (entropy(F9) and angular second moment(F1)).By means of the two texture features(F9 and F1), the effects of promoters K2O and Al2O3 on the properties of the catalysts were analysed, a higher active catalyst' s surface texture model for active catalysts is given:d(F) = 0. 00693×F9 - 0. 98039×F1 - 0.03078 > 0The results show that the Image Texture Analysis Technique would be a useful tool for the studies of catalyst surface structure and computer-aided design of catalysts.展开更多
A novel method to extract conic blending feature in reverse engineering is presented. Different from the methods to recover constant and variable radius blends from unorganized points, it contains not only novel segme...A novel method to extract conic blending feature in reverse engineering is presented. Different from the methods to recover constant and variable radius blends from unorganized points, it contains not only novel segmentation and feature recognition techniques, but also bias corrected technique to capture more reliable distribution of feature parameters along the spine curve. The segmentation depending on point classification separates the points in the conic blend region from the input point cloud. The available feature parameters of the cross-sectional curves are extracted with the processes of slicing point clouds with planes, conic curve fitting, and parameters estimation and compensation, The extracted parameters and its distribution laws are refined according to statistic theory such as regression analysis and hypothesis test. The proposed method can accurately capture the original design intentions and conveniently guide the reverse modeling process. Application examples are presented to verify the high precision and stability of the proposed method.展开更多
In modern low-altitude terrain-following guidance, a constructing method of the digital surface model (DSM) is presented in the paper to reduce the threat to flying vehicles of tall surface features for safe flight. T...In modern low-altitude terrain-following guidance, a constructing method of the digital surface model (DSM) is presented in the paper to reduce the threat to flying vehicles of tall surface features for safe flight. The relationship between an isolated obstacle size and the intervals of vertical- and cross-section in the DSM model is established. The definition and classification of isolated obstacles are proposed, and a method for determining such isolated obstacles in the DSM model is given. The simulation of a typical urban district shows that when the vertical- and cross-section DSM intervals are between 3 m and 25 m, the threat to terrain-following flight at low-altitude is reduced greatly, and the amount of data required by the DSM model for monitoring in real time a flying vehicle is also smaller. Experiments show that the optimal results are for an interval of 12.5 m in the vertical- and cross-sections in the DSM model, with a 1:10 000 DSM scale grade.展开更多
The internal structures of metallic products are important in realizing functional applications.Considering the manufacturing of inner structures,laser-based powder bed fusion(L-PBF)is an attractive approach because i...The internal structures of metallic products are important in realizing functional applications.Considering the manufacturing of inner structures,laser-based powder bed fusion(L-PBF)is an attractive approach because its layering principle enables the fabrication of parts with customized interior structures.However,the inferior surface quality of L-PBF components hinders its productization progress seriously.In this article,process,basic forms,and applications relevant to L-PBF internal structures are reviewed comprehensively.The causes of poor surface quality and differences in the microstructure and property of the surface features of L-PBF inner structures are presented to provide a perspective of their surface characteristics.Various polishing technologies for L-PBF components with inner structures are presented,whereas their strengths and weaknesses are summarized along with a discussion on the challenges and prospects for improving the interior surface quality of L-PBF parts.展开更多
The friction is the considerable boundary condition in bulk metal forming.In this paper,the ring compression test was used to evaluate the friction coefficient and factor in Coulomb friction model and Tresca friction ...The friction is the considerable boundary condition in bulk metal forming.In this paper,the ring compression test was used to evaluate the friction coefficient and factor in Coulomb friction model and Tresca friction model for the plastic deformation of aluminum alloy AA5052.The micro-macro analysis method combining surface morphology and micro-texture was used to explore the friction behaviors in AA5052 cold forming process.In general,the magnitude(μor m)of friction changes before and after a deformation threshold during ring compression.The maximum change rate of the magnitude(μor m)before and after the deformation threshold is close to 18.5%under the present experimental conditions,and the change rate decreases with increasing loading speed.The lubrication using MoS_(2) is better than that using oil at lower speeds(0.15 mm/s,1.5 mm/s),but the lubrications for MoS_(2) and oil are similar at higher speeds(15 mm/s).The surface roughness,three-dimensional topography,and surface texture of compressed ring have a sudden change around the deformation threshold,which deviate from the previous evolution trend.The increased friction after deformation threshold also promotes the formation of sufficient shear strain layer in the subsurface plane of the compressed ring,and then it hinders the formation of the typical deformation textures withβ-oriented line and promotes the appearance of shear textures such as{001}(110),{111}(uvw)and{hkl}{110)textures.展开更多
It is difficult to estimate the effects of vegetation on dust-storm intensity (DSI) since land surface data are often recorded aerially while DSI is recorded as point data by weather stations. Based on combining bot...It is difficult to estimate the effects of vegetation on dust-storm intensity (DSI) since land surface data are often recorded aerially while DSI is recorded as point data by weather stations. Based on combining both types of data, this paper analyzed the relationship be- tween vegetation and DSI, using a panel data-analysis method that examined six years of data from 186 observation stations in China. The multiple regression results showed that the relationship between changes in vegetation and variance in DSI became weaker from the sub-humid temperate zone (SHTZ) to dry temperate zone (DTZ), as the average normalized difference vegetation index decreased in the four zones in the study area. In the SHTZ and DTZ zones, the regression model could account for approximately 24.9% and 8.6% of the DSI variance, respectively. Lastly, this study provides some policy implications for combating dust storms.展开更多
基金supported by the National Natural Science Foundation of China(grant No.41571388)
文摘A lunar geologic map at a scale of 1:5000000 was finished in the 1970s by the National Aeronautics and Space Administration, U.S U.S. Geological Survey. Department of the Interior, Till now, the landform classification system and lunar morphologic mapping have not been clarified. The work aims to put forward a new landform classification system and to obtain index and map in the Sheet H010. Some key morphologic features of lunar surface were compared with those of the Earth. This research is very important for whole lunar morphologic mapping and unraveling evolutionary progress.
基金National Natural Science Foundation of China(Grant No.51804318)the China Postdoctoral Science Foundation Founded Project(Grant No.2019M650963)National Key Basic Research and Development Program of China(Grant No.2014CB239203).
文摘Morphology of hydraulic fracture surface has significant effects on oil and gas flow,proppant migration and fracture closure,which plays an important role in oil and gas fracturing stimulation.In this paper,we analyzed the fracture surface characteristics induced by supercritical carbon dioxide(SC-CO_(2))and water in open-hole and perforation completion conditions under triaxial stresses.A simple calculation method was proposed to quantitatively analyze the fracture surface area and roughness in macro-level based on three-dimensional(3D)scanning data.In micro-level,scanning electron micrograph(SEM)was used to analyze the features of fracture surface.The results showed that the surface area of the induced fracture increases with perforation angle for both SC-CO_(2)and water fracturing,and the surface area of SC-CO_(2)-induced fracture is 6.49%e58.57%larger than that of water-induced fracture.The fractal dimension and surface roughness of water-induced fractures increase with the increase in perforation angle,while those of SC-CO_(2)-induced fractures decrease with the increasing perforation angle.A considerable number of microcracks and particle peeling pits can be observed on SC-CO_(2)-induced fracture surface while there are more flat particle surfaces in water-induced fracture surface through SEM images,indicating that fractures tend to propagate along the boundary of the particle for SC-CO_(2)fracturing while water-induced fractures prefer to cut through particles.These findings are of great significance for analyzing fracture mechanism and evaluating fracturing stimulation performance.
基金jointly supported by the Key Project of Chinese Academy of Sciences(Grant No.KZCX3-SW-221)the National Natural Science Foundation of China(Grant Nos.40675047 and 40233027).
文摘Land surface changes effect the regional climate due to the complex coupling of land-atmosphere interactions. From 1995 to 2000, a decrease in the vegetation density and an increase in ground-level thermodynamic activity has been documented by multiple data sources in Northwest China, including meteorological, reanalysis from European Centre for Medium-Range Weather Forecasts (ECMWF), National Oceanic and Atmospheric Administration's (NOAA) Advanced Very High Resolution Radiometer (AVHRR) and TIROS Operational Vertical Sounder (TOVS) satellite remote sensing data. As the ground-level thermodynamic activity increases, humid air from the surrounding regions converge toward desert (and semi-desert) regions, causing areas with high vegetation cover to become gradually more arid. Furthermore, land surface changes in Northwest China are responsible for a decrease in total cloud cover, a decline in the fraction of low and middle clouds, an increase in high cloud cover (due to thermodynamic activity) and other regional climatic adaptations. It is proposed that, beginning in 1995, these cloud cover changes contributed to a "green- house" effect, leading to the rapid air temperature increases and other regional climate impacts that have been observed over Northwest China.
基金This project is supported by General Electric Corporate ResearchDevelopment and National Advanced Technology Project of China (No.863-511-942-018).
文摘A new method of extraction of blend surface feature is presented. It contains two steps: segmentation and recovery of parametric representation of the blend. The segmentation separates the points in the blend region from the rest of the input point cloud with the processes of sampling point data, estimation of local surface curvature properties and comparison of maximum curvature values. The recovery of parametric representation generates a set of profile curves by marching throughout the blend and fitting cylinders. Compared with the existing approaches of blend surface feature extraction, the proposed method reduces the requirement of user interaction and is capable of extracting blend surface with either constant radius or variable radius. Application examples are presented to verify the proposed method.
基金This project is supported by Key Program of National Natural Science Foundation of China(No.50435020).
文摘A principal direction Gaussian image (PDGI)-based algorithm is proposed to extract the regular swept surface from point cloud. Firstly, the PDGI of the regular swept surface is constructed from point cloud, then the bounding box of the Gaussian sphere is uniformly partitioned into a number of small cubes (3D grids) and the PDGI points on the Gaussian sphere are associated with the corresponding 3D grids. Secondly, cluster analysis technique is used to sort out a group of 3D grids containing more PDGI points among the 3D grids. By the connected-region growing algorithm, the congregation point or the great circle is detected from the 3D grids. Thus the translational direction is determined by the congregation point and the direction of the rotational axis is determined by the great circle. In addition, the positional point of the rotational axis is obtained by the intersection of all the projected normal lines of the rotational surface on the plane being perpendicular to the estimated direction of the rotational axis. Finally, a pattem search method is applied to optimize the translational direction and the rotational axis. Some experiments are used to illustrate the feasibility of the above algorithm.
基金The National Natural Science Foundation of China under contract No.41276088
文摘Several remotely sensed sea surface salinity(SSS) retrievals with various resolutions from the soil moisture and ocean salinity(SMOS) and Aquarius/SAC-D missions are applied as inputs for retrieving salinity profiles(S) using multilinear regressions. The performance is evaluated using a total root mean square(RMS) error, different error sources, and the feature resolutions of the retrieved S fields. In the mixed layer of the salinity, the SSS-S regression coefficients are uniformly large. The SSS inputs yield smaller RMS errors in the retrieved S with respect to Argo profiles as their spatial or temporal resolution decreases. The projected SSS errors are dominant, and the retrieved S values are more accurate than those of climatology in the tropics except for the tropical Atlantic, where the regression errors are abnormally large. Below that level, because of the influence of a sea level anomaly, the areas of high-accuracy S values shift to higher latitudes except in the high-latitude southern oceans, where the projected SSS errors are abnormally large. A spectral analysis suggests that the CATDS-0.25° results are much noisier and that the BEC-L4-0.25° results are much smoother than those of the other retrievals. Aquarius-CAP-1° generates the smallest RMS errors, and Aquarius-V2-1° performs well in depicting large-scale phenomena. BEC-L3-0.25°,which has small RMS errors and remarkable mesoscale energy, is the best fit for portraying mesoscale features in the SSS and retrieved S fields. The current priority for retrieving S is to improve the reliability of satellite SSS especially at middle and high latitudes, by developing advanced algorithms, combining both sensors, or weighing between accuracy and resolutions.
基金Supported by the National Natural Science Foundation of China (No. 50772083)China-Japan Cooperation Program(No. 2010DFA51270)the Fundamental Research Funds for the Central Universities
文摘The PZT thin films were prepared on (111)- Pt/Ti/SiO2/Si substrates by sol-gel method, and lead acetate [Pb(CH3COO)2], zirconium nitrate [Zr(NO3)4] were used as raw materials. The X-ray diffractometer (XRD) and scanning electron microscopy (SEM) were used to characterize the phase structure and surface morphology of the films annealed at 650 ~C but with different holding time. Ferroelectric and dielectric properties of the films were measured by the ferroelectric tester and the precision impedance analyzer, respectively. The PZT thin films were constructed with epoxy resin as a composite structure, and the damping properties of the composite were tested by dynamic mechanical analyzer (DMA). The results show that the films annealed for 90 minutes present a dense and compact crystal arrangement on the surface; moreover, the films also achieve their best electric quality. At the same time, the largest damping loss factor of the composite constructed with the 90 mins-annealed film shows peak value of 0.9, hi^her than the pure epoxy resin.
文摘Aiming at the problem that the total pressure loss of the flue of the electric precipitator of the 350 MW unit of a power plant to the inlet of the draft fan is too large,the numerical simulation software Fluent and the standard k-εmodel was used to simulate the flue,the results show that the main part of the flue mean total pressure loss is derived from the confluence header and elbow.In order to reduce the loss and consider the cost of transformation,the concept of twodimensional feature surface is established,gradually proposed three sets of flue transformation program and analysis of the flue transformation program drag reduction effect,the results show that the total reduction of the flue can be reduced from 486 Pa to 89 Pa and the reduction rate is 81.7%,which is the best solution;The concept of two-dimensional feature plane is helpful for quick condensing of flue;Double V-type structure of the convergence of the box has a better drag reduction effect.
基金Supported by the National Natural Science Foundation of China
文摘The present paper covers surface texture features of the catalysts for the oxidation of o-xylene to phthalic anhydride (PA) investigated by the Image Texture Analysis Technique and obviously corresponding relationships between the catalyst activity and its texture features (entropy(F9) and angular second moment(F1)).By means of the two texture features(F9 and F1), the effects of promoters K2O and Al2O3 on the properties of the catalysts were analysed, a higher active catalyst' s surface texture model for active catalysts is given:d(F) = 0. 00693×F9 - 0. 98039×F1 - 0.03078 > 0The results show that the Image Texture Analysis Technique would be a useful tool for the studies of catalyst surface structure and computer-aided design of catalysts.
基金This project is supported by General Electric Company and National Advanced Technology Project of China(No.863-511-942-018).
文摘A novel method to extract conic blending feature in reverse engineering is presented. Different from the methods to recover constant and variable radius blends from unorganized points, it contains not only novel segmentation and feature recognition techniques, but also bias corrected technique to capture more reliable distribution of feature parameters along the spine curve. The segmentation depending on point classification separates the points in the conic blend region from the input point cloud. The available feature parameters of the cross-sectional curves are extracted with the processes of slicing point clouds with planes, conic curve fitting, and parameters estimation and compensation, The extracted parameters and its distribution laws are refined according to statistic theory such as regression analysis and hypothesis test. The proposed method can accurately capture the original design intentions and conveniently guide the reverse modeling process. Application examples are presented to verify the high precision and stability of the proposed method.
基金Supported by the National Natural Science Foundation of China (No. 60072009)
文摘In modern low-altitude terrain-following guidance, a constructing method of the digital surface model (DSM) is presented in the paper to reduce the threat to flying vehicles of tall surface features for safe flight. The relationship between an isolated obstacle size and the intervals of vertical- and cross-section in the DSM model is established. The definition and classification of isolated obstacles are proposed, and a method for determining such isolated obstacles in the DSM model is given. The simulation of a typical urban district shows that when the vertical- and cross-section DSM intervals are between 3 m and 25 m, the threat to terrain-following flight at low-altitude is reduced greatly, and the amount of data required by the DSM model for monitoring in real time a flying vehicle is also smaller. Experiments show that the optimal results are for an interval of 12.5 m in the vertical- and cross-sections in the DSM model, with a 1:10 000 DSM scale grade.
文摘The internal structures of metallic products are important in realizing functional applications.Considering the manufacturing of inner structures,laser-based powder bed fusion(L-PBF)is an attractive approach because its layering principle enables the fabrication of parts with customized interior structures.However,the inferior surface quality of L-PBF components hinders its productization progress seriously.In this article,process,basic forms,and applications relevant to L-PBF internal structures are reviewed comprehensively.The causes of poor surface quality and differences in the microstructure and property of the surface features of L-PBF inner structures are presented to provide a perspective of their surface characteristics.Various polishing technologies for L-PBF components with inner structures are presented,whereas their strengths and weaknesses are summarized along with a discussion on the challenges and prospects for improving the interior surface quality of L-PBF parts.
基金supports of the National Natural Science Foundation of China(No.51675415)。
文摘The friction is the considerable boundary condition in bulk metal forming.In this paper,the ring compression test was used to evaluate the friction coefficient and factor in Coulomb friction model and Tresca friction model for the plastic deformation of aluminum alloy AA5052.The micro-macro analysis method combining surface morphology and micro-texture was used to explore the friction behaviors in AA5052 cold forming process.In general,the magnitude(μor m)of friction changes before and after a deformation threshold during ring compression.The maximum change rate of the magnitude(μor m)before and after the deformation threshold is close to 18.5%under the present experimental conditions,and the change rate decreases with increasing loading speed.The lubrication using MoS_(2) is better than that using oil at lower speeds(0.15 mm/s,1.5 mm/s),but the lubrications for MoS_(2) and oil are similar at higher speeds(15 mm/s).The surface roughness,three-dimensional topography,and surface texture of compressed ring have a sudden change around the deformation threshold,which deviate from the previous evolution trend.The increased friction after deformation threshold also promotes the formation of sufficient shear strain layer in the subsurface plane of the compressed ring,and then it hinders the formation of the typical deformation textures withβ-oriented line and promotes the appearance of shear textures such as{001}(110),{111}(uvw)and{hkl}{110)textures.
基金National Natural Science Foundation of China,No.41271119,No.91325302No.41161140352National Basic Research Program of China,No.2015CB452705
文摘It is difficult to estimate the effects of vegetation on dust-storm intensity (DSI) since land surface data are often recorded aerially while DSI is recorded as point data by weather stations. Based on combining both types of data, this paper analyzed the relationship be- tween vegetation and DSI, using a panel data-analysis method that examined six years of data from 186 observation stations in China. The multiple regression results showed that the relationship between changes in vegetation and variance in DSI became weaker from the sub-humid temperate zone (SHTZ) to dry temperate zone (DTZ), as the average normalized difference vegetation index decreased in the four zones in the study area. In the SHTZ and DTZ zones, the regression model could account for approximately 24.9% and 8.6% of the DSI variance, respectively. Lastly, this study provides some policy implications for combating dust storms.