MXene quantum dots(MQDs)offer wide applications owing to the abundant surface chemistry,tunable energy-level structure,and unique properties.However,the application of MQDs in electrochemical energy conversion,includi...MXene quantum dots(MQDs)offer wide applications owing to the abundant surface chemistry,tunable energy-level structure,and unique properties.However,the application of MQDs in electrochemical energy conversion,including hydrogen evolution reaction(HER),remains to be realized,as it remains a challenge to precisely control the types of surface groups and tune the structure of energy levels in MQDs,owing to the high surface energy-induced strong agglomeration in post-processing.Consequently,the determination of the exact catalytically active sites and processes involved in such an electrocatalysis is challenging because of the complexity of the synthetic process and reaction conditions.Herein,we demonstrated the spontaneous evolution of the surface groups of the Ti_(2)CT_(x)MQDs(x:the content of O atom),i.e.,replacement of the-Cl functional groups by O-terminated ones during the cathode reaction.This process resulted in a low Gibbs free energy(0.26 eV)in HER.Our steady Ti_(2)CO_(x)/Cu_(2)O/Cu foam systems exhibited a low overpotential of 175 mV at 10 mA cm^(-2)in 1 M aq.KOH,and excellent operational stability over 165 h at a constant current density of-10 mA cm^(-2).展开更多
The exposed and transformed groups of fibrous brucite,wollastonite,chrysotile asbestos,sepiolite,palygorskite,clinoptilolite,crocidolite and diatomaceous earth mineral materials are analyzed by IR spectra after acid a...The exposed and transformed groups of fibrous brucite,wollastonite,chrysotile asbestos,sepiolite,palygorskite,clinoptilolite,crocidolite and diatomaceous earth mineral materials are analyzed by IR spectra after acid and alikali etching,strong mechanical and polarity molecular interaction.The results show the active sites concentrate on the ends in stick mineral materials and on the defect or hole edge in pipe mineral materials.The inside active site of mineral materials plays a main role in small molecular substance.The shape of minerals influence their distribution and density of active site.The strong mechanical impulsion and weak chemical force change the active site feature of minerals,the powder process enables minerals exposed more surface group and more combined types.The surface processing with the small polarity molecular or the brand of middle molecular may produce ionation and new coordinate bond,and change the active properties and level of original mineral materials.展开更多
By constructing counterexamples,the authors show that the fixed subgroups are not compressed in direct products of free and surface groups,and hence negate a conjecture in[Zhang,Q.,Ventura,E.and J.Wu,Fixed subgroups a...By constructing counterexamples,the authors show that the fixed subgroups are not compressed in direct products of free and surface groups,and hence negate a conjecture in[Zhang,Q.,Ventura,E.and J.Wu,Fixed subgroups are compressed in surface groups,Internat.J.Algebra Comput.,25,2015,865–887].展开更多
Nanostructured aluminum recently delivers a variety of new applications of the earth-abundant Al resource due to the unique properties,but its controllable synthesis remains very challenging with harsh conditions and ...Nanostructured aluminum recently delivers a variety of new applications of the earth-abundant Al resource due to the unique properties,but its controllable synthesis remains very challenging with harsh conditions and spontaneously flammable precursors.Herein,a surface group directed method is developed to efficiently achieve low-temperature synthesis and selfassembly of zero-dimensional(0D)Al nanocrystals over one-dimensional(1D)carbon fibers(Al@CFs)through non-flammable AlCl3 reduction at 70°C.Theoretical calculations unveil surface‒OLi groups of carbon fibers exert efficient binding effect to AlCl3,which guides intimate adsorption and in-situ self-assembly of the generated Al nanocrystals.The distinctive 0D-over-1D Al@CFs provides long 1D conductive networks for electron transfer,ultrafine 0D Al nanocrystals for fast lithiation and excellent buffering effect for volume change,thus exhibiting high structure stability and superior lithium storage performance.This work paves the way for mild and controllable synthesis of Al-based nanomaterials for new high-value applications.展开更多
Water pollution regarding dyes and heavy metal ions is crucial facing the world.How to effectively separate these contaminants from water has been a key issue.Graphene oxide(GO)promises the greenwater world as a long-...Water pollution regarding dyes and heavy metal ions is crucial facing the world.How to effectively separate these contaminants from water has been a key issue.Graphene oxide(GO)promises the greenwater world as a long-lasting spotlight adsorbent material and therefore,harnessing GO has been the research hotspot for over a decade.The state of GO as well as its surface functional groups plays an important role in adsorption.And the way of preparation and structural modification matters to the performance of GO.In this review,the significance of the state of existence of stock GO and surface functional groups is explored in terms of preparation,structural modification,and adsorption.Besides,various adsorbates for GO adsorption are also involved,the discussion of which is rarely established elsewhere.展开更多
The activated carbon with high surface area was prepared by KOH activation.It was further modified by H2SO4 and HNO3 to introduce more surface functional groups.The pore structure of the activated carbons before and a...The activated carbon with high surface area was prepared by KOH activation.It was further modified by H2SO4 and HNO3 to introduce more surface functional groups.The pore structure of the activated carbons before and after modification was analyzed based on the nitrogen adsorption isotherms.The morphology of those activated carbons was characterized using scanning electronic microscopy (SEM).The surface functional groups were determined by Fourier transform infrared spectroscopy (FTIR).The quantity of those groups was measured by the Boehm titration method.Cr(VI) removal by the activated carbons from aqueous solution was investigated at different pH values.The results show that compared with H2SO4,HNO3 destructs the original pore of the activated carbon more seriously and induces more acidic surface functional groups on the activated carbon.The pH value of the solution plays a key role in the Cr(VI) removal.The ability of reducing Cr(VI) to Cr(III) by the activated carbons is relative to the acidic surface functional groups.At higher pH values,the Cr(VI) removal ratio is improved by increasing the acidic surface functional groups of the activated carbons.At lower pH values,however,the acidic surface functional groups almost have no effect on the Cr(VI) removal by the activated carbon from aqueous solution.展开更多
FeO;supported on activated carbon(AC) has been shown to be an ideal catalyst for catalytic wet peroxide oxidation(CWPO) due to its high CWPO reaction activity and stability. Although there have been some studies on th...FeO;supported on activated carbon(AC) has been shown to be an ideal catalyst for catalytic wet peroxide oxidation(CWPO) due to its high CWPO reaction activity and stability. Although there have been some studies on the mechanism of Fe/AC catalysis in CWPO, the specific contribution of each component(surface oxygen groups and FeOxon AC) inside an Fe/AC catalyst and their corresponding reaction mechanism remain unclear, and the reaction stability of CWPO catalysts has rarely been discussed. Then the optimal CWPO catalyst in our laboratory, 3%Fe/AC, was selected.(1) By removing certain components on the AC through heat treatment, its contribution to the reaction and the corresponding reaction mechanism were investigated. With the aid of temperature-programmed desorption–mass spectrometry(TPD–MS) and the CWPO reaction, the normalized catalytic contributions of components were shown to be: 37.3%(carboxylic groups), 5.3%(anhydride), 19.3%(ether/hydroxyl),-71.4%(carbonyl groups) and 100%(FeOx),respectively. DFT calculation and EPR analysis confirmed that carboxylic groups and Fe_(2)O_(3) are able to activate the H_(2)O_(2) to generate·OH.(2) The catalysts at were characterized at different reaction times(0 h, 450 h, 900 h, 1350 h, and 1800 h) by TPD–MS and M?ssbauer spectroscopy. Results suggested that the number of carboxylic goups gradually increased and the size of paramagnetic Fe_(2)O_(3) particle crystallites gradually increased as the reactions progressed. The occurrence of strong interactions between metal oxides and AC was also confirmed. Due to these effects, the strong stability of 3%Fe/AC was further improved. Therefore, the reasons for the high activity and strong stability of 3%Fe/AC in CWPO were clearly shown. We believe that this work provides an idea of the removal of cresols from wastewater into the introduction to show the potential applications of CWPO.展开更多
The oxidation heat of coal is the direct reason leading to coal spontaneous combustion. When coal is exposed in oxygen atmosphere, the physical adsorption and chemisorption happened, and then which resulting chemical ...The oxidation heat of coal is the direct reason leading to coal spontaneous combustion. When coal is exposed in oxygen atmosphere, the physical adsorption and chemisorption happened, and then which resulting chemical reaction followed heat between coal and oxygen. Owing to the complexity and uncertain of molecular structure of coal,it was only reduced that bridge bonds, side chains and O 2 containing functional groups in coal may be prone to oxidation in last year, but not to deeply investigate into the structures and the type of the active radicals. In this paper, according to the last achievements in coal structure research, the hypomethylether bond, hypoalkyl bond of α carbon atom with hydroxyl and α carbon atom with hypomethy side chain and hypomethyl bonds linking up two aromatic hydrocarbon in bridge bonds, and methoxy,aldehyde and alkyls of α carbon atom with hydroxy in side bonds are inferred to be free radical easily to lead to oxidize coal under the ambient temperature and pressure. The order from strong to weak of oxide activation of the seven surface active groups is aldehyde side chains, hypomethylether bonds, hypoalkyl bonds of α carbon atom with hydroxyl, hypoalkyl bonds of α carbon atom with hypomethyl, hypomethyl bonds linking up two aromatic hydrocarbon,methoxy, alkyls side chains of α carbon atom with hydroxyl. Because of the two unsaturated molecular tracks of O 2, unpaired electron clouds of the part of surface active groups of coal enter molecular tracks of O 2 to lead to chemisorb on the conjugate effect and induced effect of surface active groups, and then chemical reaction followed heat happens in them. On the basis of change of bond energy, weighted average method is adopted to count the reaction heat value of each mol CO,CO 2 and H 2O. The property of coal spontaneous combustion is different for the different number and oxidability of the active structure in the coal resulting in the different oxidation heat.展开更多
A series of activated carbons(ACs) were prepared using HNO_3,H_2O_2 and steam as activation agents with the aim to introduce functional groups to carbon surface in the ACs preparation process.The effects of concentr...A series of activated carbons(ACs) were prepared using HNO_3,H_2O_2 and steam as activation agents with the aim to introduce functional groups to carbon surface in the ACs preparation process.The effects of concentration of activation agent,activation time on the surface functional groups and redox property of ACs were characterized by Temperature Program Desorption(TPD) and Cyclic Voltammetry(CV).Results showed that lactone groups of ACs activated by HNO_3 increase with activation time,and the carboxyl groups increase with the concentration of HNO_3.Carbonyl/quinine groups of ACs activated by H_2O_2 increase with the activation time and the concentration of H_2O_2,although the acidic groups decrease with the concentration of H_2O_2.The redox property reflected by CV at 0 and 0.5 V is different with any kinds of oxygen functional groups characterized by TPD,but it is consistent with the SO_2 catalytic oxidization /oxidation properties indicated by TPR.展开更多
MXenes are a novel family of two-dimensional(2D)materials that are fast gaining popularity due to their versatile characteristics.The surfaces of these materials are often functionalized by negatively charged terminal...MXenes are a novel family of two-dimensional(2D)materials that are fast gaining popularity due to their versatile characteristics.The surfaces of these materials are often functionalized by negatively charged terminal groups,such as=O,OH,and F during their synthesis,and it has been hypothesized that regulating the surface terminators enables to control the material characteristics.However,there is still a large gap between computational and experimental investigations regarding comprehending the surface functional groups.Surfaces with mixed terminations are consistently synthesized in experiments,although pure terminated surfaces are predicted by computational research.Here we summarized the nature of chemical bonding in transition metal carbide materials(MXenes)by1H and19F nuclear magnetic resonance(NMR),Raman,X-ray absorption near edge structure(XANES),extended X-ray absorption fine structure(EXAFS),ultraviolet photoelectron spectroscopy(UPS),X-ray photoelectron spectroscopy(XPS)/scanning transmission electron microscopy(STEM),and thermogravimetric analysis-mass spectrometry(TGA-MS)characterizations.Previous literature reveals that=O,–OH,–F,and–Cl are typical MXene surface terminators.However,recent comparative investigations on the valence band intensity distribution in MXenes reveal that the–OH cannot be considered an intrinsic termination species in MXenes.The surface terminals(=O,–OH,–F,and–Cl)of several MXenes,particularly V2CTxand Ti3C2Tx,will be identified and quantified here.We have also discussed different etching approaches for the synthesis of MXene,the dependence of MXene conductivity on MXene terminating groups,and the emission of various gaseous products that evolved during its chemical transformations.This paper provides significance,especially in the field of energy conversion and storage materials,where the intercalation process is crucial.展开更多
This article discussed the benzoic acid activated carbons which have changed the types and content of acid oxygen-function groups on the surface of activated carbons and their effect on the adsorption for Hg^0 in simu...This article discussed the benzoic acid activated carbons which have changed the types and content of acid oxygen-function groups on the surface of activated carbons and their effect on the adsorption for Hg^0 in simulated flue gas at 140 ℃. These surface acid oxygen function groups were identified by Boehm titration, Fourier transformation infrared spectrum, temperature programmed desorption and X-ray photoelectron spectroscopy. It indicates that the carboxyl, lactone and phenolic were formed when the benzoic acid is loaded on the surface of activated carbons. Among the surface acid oxygen function groups, the carboxyl groups enhance the adsorption capacities of Hg^0 for activated carbons to a greater extent.展开更多
Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery a...Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery and the high-value utilization of residual carbon(RC)in FS are the keys to realizing the win-win situation of the coal chemical industry in terms of economic and environmental benefits.The structural properties,such as pore,surface functional group,and microcrystalline structures,of RC in FS(FS-RC)not only affect the flotation recovery efficiency of FS-RC but also form the basis for the high-value utilization of FS-RC.In this paper,the characteristics of FS-RC in terms of pore structure,surface functional groups,and microcrystalline structure are sorted out in accordance with gasification type and FS particle size.The reasons for the formation of the special structural properties of FS-RC are analyzed,and their influence on the flotation separation and high-value utilization of FS-RC is summarized.Separation methods based on the pore structural characterist-ics of FS-RC,such as ultrasonic pretreatment-pore-blocking flotation and pore breaking-flocculation flotation,are proposed to be the key development technologies for improving FS-RC recovery in the future.The design of low-cost,low-dose collectors containing polar bonds based on the surface and microcrystalline structures of FS-RC is proposed to be an important breakthrough point for strengthening the flotation efficiency of FS-RC in the future.The high-value utilization of FS should be based on the physicochemical structural proper-ties of FS-RC and should focus on the environmental impact of hazardous elements and the recyclability of chemical waste liquid to es-tablish an environmentally friendly utilization method.This review is of great theoretical importance for the comprehensive understand-ing of the unique structural properties of FS-RC,the breakthrough of the technological bottleneck in the efficient flotation separation of FS,and the expansion of the field of the high value-added utilization of FS-RC.展开更多
In this study, the surface chemical properties of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) grown by catalytic decomposition of methane on nickel and cobalt based catalysts were studied by DRIFT (Diffuse Re...In this study, the surface chemical properties of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) grown by catalytic decomposition of methane on nickel and cobalt based catalysts were studied by DRIFT (Diffuse Reflectance Infrared Fourier Transform) and transmission Infrared (IR) spectroscopy. The results show that the surface exists not only carbon-hydrogen groups, but also carboxyl, ketene or quinone (carbonyl) oxygen-containing groups. These functional groups were formed in the process of the material growth, which result in large amount of chemical defect sites on the walls.展开更多
To achieve high energy density in lithium batteries,the construction of lithium-ion/metal hybrid anodes is a promising strategy.In particular,because of the anisotropy of graphite,hybrid anode formed by graphite/Li me...To achieve high energy density in lithium batteries,the construction of lithium-ion/metal hybrid anodes is a promising strategy.In particular,because of the anisotropy of graphite,hybrid anode formed by graphite/Li metal has low transport kinetics and is easy to causes the growth of lithium dendrites and accumulation of dead Li,which seriously affects the cycle life of batteries and even causes safety problems.Here,by comparing graphite with two types of hard carbon,it was found that hybrid anode formed by hard carbon and lithium metal,possessing more disordered mesoporous structure and lithophilic groups,presents better performance.Results indicate that the mesoporous structure provides abundant active site and storage space for dead lithium.With the synergistic effect of this structure and lithophilic functional groups(–COOH),the reversibility of hard carbon/lithium metal hybrid anode is maintained,promoting uniform deposition of lithium metal and alleviating formation of lithium dendrites.The hybrid anode maintains a 99.5%Coulombic efficiency(CE)after 260 cycles at a specific capacity of 500 m Ah/g.This work provides new insights into the hybrid anodes formed by carbon-based materials and lithium metal with high specific energy and fast charging ability.展开更多
The paper analyzed the groups naked and the transformed of fibrous brucite, wollastonite, chrysotile asbestos, sepiolite, palygorskite, clinoptilolite, crocidolite and diatomaceous earth mineral dusts by using IR unde...The paper analyzed the groups naked and the transformed of fibrous brucite, wollastonite, chrysotile asbestos, sepiolite, palygorskite, clinoptilolite, crocidolite and diatomaceous earth mineral dusts by using IR under acid and alkali etched, strong mechanical and polarized molecular interaction. The results show that the active site focuses on ends in stick dusts and on defects or hole edges in pipe dusts. The inside active sites of dusts play the main role in small molecular substance. The shape of dusts affects their distributions and densities of active sites. The strong mechanical and weak chemical force make the active site feature of minerals change, the powder process brings about more naked surface groups and more combined types. The dust activity relates to the type, contribution, and naked level of surface groups. The studied dust surface groups are mainly as follows: OH?, Mg(OH)?, Si-O-Si, Ca-O-Si, -Mg-OH2,-Al(Si)-OH, -Mg(Ca)-OH2, Ca-O,-Si???OH, Mg(Fe)-OH. Due to the difference of surface composition and structure, the minerals have a large disparity on activity and character of surface groups. The one side surface group of chrysotile layer is the same as fibrous brucite and stripped layer with more naked group. The fibrous sepiolite and palygorskite surface OH? similar to crocidolite is naked with their surface structural defects and cleavage. The more development of mineral defects, the higher of OH? (H2O+) content, the main H2O+ of clinoptilolite is partly transformed into H+, NH 4 + or OH?. The acid etched process may change OH? concentration, distribution and increase the defects and porosity of mineral fiber surface. The alkali etched has no effect on Si-O, Si-OH etc. and destroyed Al-O, Al-OH? acid site of sepiolite, palygorskite and clinoptilolite. Some surface groups of remnant differ from original dusts. The surface process of small polarized molecular or middle moleular’s branch may produce ionation and new coordinate bond, and change the active properties and level of original dusts, such as the porous minerals producing展开更多
The thermal deactivation of diesel soot particles exerts a significant influence on the control strategy for the regeneration of diesel particulate filters(DPFs).This work focused on the changes in the surface functio...The thermal deactivation of diesel soot particles exerts a significant influence on the control strategy for the regeneration of diesel particulate filters(DPFs).This work focused on the changes in the surface functional groups,carbon chemical state,and graphitization degree during thermal treatment in an inert gas environment at intermediate temperatures of 600℃,800℃,and 1000℃ and explore the chemical species that were desorbed from the diesel soot surface during thermal treatment using a thermogravimetric analyser coupled with a gas-chromatograph mass spectrometer(TGA-GC/MS).The surface functional groups and carbon chemical statewere characterized using Fourier transform infrared spectroscopy(FT-IR)and X-ray photoelectron spectroscopy(XPS).The graphitization degree was evaluated by means of Raman spectroscopy(RS).The concentrations of aliphatic C–H,C–OH,C=O,and O–C=O groups are reduced for diesel soot and carbon black when increasing the thermal treatment temperature,while the sp^(2)/sp^(3) hybridized ratio and graphitization degree enhance.These results provide comprehensive evidence of the decreased reactivity of soot samples.Among oxygenated functional groups,the percentage reduction during thermal treatment is the largest for the O–C=O groups owing to its worst thermodynamic stability.TGA-GC/MS results show that the aliphatic and aromatic chains and oxygenated species would be desorbed from the soot surface during 1000℃ thermal treatment of diesel soot.展开更多
Photocatalytic CO_(2) reduction to valuable chemical compounds could be a promising approach for carbon-neutral practice.In this work,a simple and robust thermal decomposition process was developed with ammonium carbo...Photocatalytic CO_(2) reduction to valuable chemical compounds could be a promising approach for carbon-neutral practice.In this work,a simple and robust thermal decomposition process was developed with ammonium carbonate((NH4)2CO3)as both precipitation agent and sacrificial template to produce fine Nb_(2)O_(5) nanoparticles with the rich existence of surface hydroxyl(–OH)groups.It was found by density functional theory(DFT)calculations and experiments that the rich existence of the surface–OH groups enhanced the adsorption of both reactants(CO_(2) and H_(2)O molecules)for the photocatalytic CO_(2) reduction on these fine Nb_(2)O_(5) nanoparticles,and the highly selective conversion of CO_(2) to the high-value chemical compound of ethylene(C_(2)H_(4),~68μmol·g^(−1)·h^(−1) with~100%product selectivity)was achieved under simulated solar illumination without usage of any sacrificial agents or noble metal cocatalysts.This synthesis process may also be readily applied as a surface engineering method to enrich the existence of the surface–OH groups on various metal oxide-based photocatalysts for a broad range of technical applications.展开更多
It is well known that two-dimensional(2D)MXene-derived quan-tum dots(MQDs)inherit the excellent physicochemical properties of the parental MXenes,as a Chinese proverb says,“Indigo blue is extracted from the indigo pl...It is well known that two-dimensional(2D)MXene-derived quan-tum dots(MQDs)inherit the excellent physicochemical properties of the parental MXenes,as a Chinese proverb says,“Indigo blue is extracted from the indigo plant,but is bluer than the plant it comes from.”Therefore,0D QDs harvest larger surface-to-volume ratio,outstanding optical properties,and vigorous quantum confinement effect.Currently,MQDs trigger enormous research enthusiasm as an emerging star of functional materials applied to physics,chemistry,biology,energy conversion,and storage.Since the surface properties of small-sized MQDs include the type of surface functional groups,the functionalized surface directly determines their performance.As the Nobel Laureate Wolfgang Pauli says,“God made the bulk,but the surface was invented by the devil,”and it is just on the basis of the abundant surface functional groups,there is lots of space to be thereof excavated from MQDs.We are witnessing such excellence and even more promising to be expected.Nowadays,MQDs have been widely applied to catalysis,whereas the related reviews are rarely reported.Herein,we provide a state-of-the-art overview of MQDs in catalysis over the past five years,ranging from the origin and development of MQDs,synthetic routes of MQDs,and functionalized MQDs to advanced characterization techniques.To explore the diversity of catalytic application and perspectives of MQDs,our review will stimulate more efforts toward the synthesis of optimal MQDs and thereof designing high-performance MQDs-based catalysts.展开更多
MXenes have captured extensive attention in various fields by virtue of unique hydrophilicity,high conductivity and tunable surface terminations.In this review,the state-of-the-art progresses of designing functional M...MXenes have captured extensive attention in various fields by virtue of unique hydrophilicity,high conductivity and tunable surface terminations.In this review,the state-of-the-art progresses of designing functional MXenes have been summarized.Firstly,the synthesis methods of MXenes are summarized and classified into HF etching,in-situ HF etching and fluoride-free etching approaches based on the effect on the surface chemistry of MXenes.Secondly,the factors that affect the surface termination groups are discussed,including synthesis methods,heat treatment temperature and atmosphere.Thirdly,this review gives an overview of the synthetic routes of functional MXenes including termination modification by synthesis methods and heat treatment,heteroatom(N,S,or P)doping,cation and organic molecule intercalation and hybridization with polymer,which inhibit restacking and increase active sites for intrinsically enhancing the inherent physical and chemical properties of MXenes.Finally,the applications with respect to energy storage and conversion,catalysis,sensors,electromagnetic interference shielding and microwave absorption of functional MXenes are introduced.Additionally,the critical challenges and development prospects of functional MXenes are also highlighted.展开更多
The effect of the improvement of commercial activated carbon(AC) on its specific capacitance and high rate capability of double layer(dl) charging/discharging process has been studied. The improvement of AC was carrie...The effect of the improvement of commercial activated carbon(AC) on its specific capacitance and high rate capability of double layer(dl) charging/discharging process has been studied. The improvement of AC was carried out \%via\% a secondary activation under steam in the presence of catalyst NiCl\-2, and the suitable condition was found to be a heat treatment at about 875 ℃ for 1 h. Under those conditions, the discharge specific capacitance of the improved AC increases up to 53.67 F/g, showing an increase of about 25% as compared with that of as-received AC. The good rectangular-shaped voltammograms and A.C. impedance spectra prove that the high rate capability of the capacitor made of the improved AC is enhanced significantly. The capacitance resistance(RC) time constant of the capacitor containing the improved AC is 1\^74 s, which is much lower than that of the one containing as-received AC(an RC value of 4.73 s). It is noted that both kinds of AC samples show a similar specific surface area and pore size distribution, but some changes have taken place in the carbon surface groups, especially a decrease in the concentration of surface carbonyl groups after the improvement, which have been verified by means of X-photoelectron spectroscopy. Accordingly, it is suggested that the decrease in the concentration of surface carbonyl groups for the improved AC is beneficial to the organic electrolyte ion penetrating into the pores, thus leading to the increase in both the specific capacitance and high rate capability of the supercapacitor.展开更多
基金supported by the National Natural Science Foundation of China(51872115,52101256,and 51932003)China Postdoctoral Science Foundation Project(2020 M680043)+1 种基金Science and Technology Research Project of the Department of Education of Jilin Province(JJKH20211083KJ)2020 International Cooperation Project of the Department of Science and Technology of Jilin Province(20200801001GH).
文摘MXene quantum dots(MQDs)offer wide applications owing to the abundant surface chemistry,tunable energy-level structure,and unique properties.However,the application of MQDs in electrochemical energy conversion,including hydrogen evolution reaction(HER),remains to be realized,as it remains a challenge to precisely control the types of surface groups and tune the structure of energy levels in MQDs,owing to the high surface energy-induced strong agglomeration in post-processing.Consequently,the determination of the exact catalytically active sites and processes involved in such an electrocatalysis is challenging because of the complexity of the synthetic process and reaction conditions.Herein,we demonstrated the spontaneous evolution of the surface groups of the Ti_(2)CT_(x)MQDs(x:the content of O atom),i.e.,replacement of the-Cl functional groups by O-terminated ones during the cathode reaction.This process resulted in a low Gibbs free energy(0.26 eV)in HER.Our steady Ti_(2)CO_(x)/Cu_(2)O/Cu foam systems exhibited a low overpotential of 175 mV at 10 mA cm^(-2)in 1 M aq.KOH,and excellent operational stability over 165 h at a constant current density of-10 mA cm^(-2).
基金FundedbytheNationalNaturalScienceFoundationofChi na (No .4 0 0 72 0 2 0 )andtheTRAPforOutstandingYoungTeachersinHigherEducationInstitutionsofMOE China
文摘The exposed and transformed groups of fibrous brucite,wollastonite,chrysotile asbestos,sepiolite,palygorskite,clinoptilolite,crocidolite and diatomaceous earth mineral materials are analyzed by IR spectra after acid and alikali etching,strong mechanical and polarity molecular interaction.The results show the active sites concentrate on the ends in stick mineral materials and on the defect or hole edge in pipe mineral materials.The inside active site of mineral materials plays a main role in small molecular substance.The shape of minerals influence their distribution and density of active site.The strong mechanical impulsion and weak chemical force change the active site feature of minerals,the powder process enables minerals exposed more surface group and more combined types.The surface processing with the small polarity molecular or the brand of middle molecular may produce ionation and new coordinate bond,and change the active properties and level of original mineral materials.
基金supported by the National Natural Science Foundation of China(Nos.12271385,12471066)the Shaanxi Fundamental Science Research Project for Mathematics and Physics(No.23JSY027)。
文摘By constructing counterexamples,the authors show that the fixed subgroups are not compressed in direct products of free and surface groups,and hence negate a conjecture in[Zhang,Q.,Ventura,E.and J.Wu,Fixed subgroups are compressed in surface groups,Internat.J.Algebra Comput.,25,2015,865–887].
基金The authors acknowledge the financial support from the National Natural Science Foundation of China(Nos.22101065 and 51972075)the Natural Science Foundation of Heilongjiang Province(No.YQ2021B001)+1 种基金the China Postdoctoral Science Foundation(No.2020M681075)the Fundamental Research Funds for the Central Universities.
文摘Nanostructured aluminum recently delivers a variety of new applications of the earth-abundant Al resource due to the unique properties,but its controllable synthesis remains very challenging with harsh conditions and spontaneously flammable precursors.Herein,a surface group directed method is developed to efficiently achieve low-temperature synthesis and selfassembly of zero-dimensional(0D)Al nanocrystals over one-dimensional(1D)carbon fibers(Al@CFs)through non-flammable AlCl3 reduction at 70°C.Theoretical calculations unveil surface‒OLi groups of carbon fibers exert efficient binding effect to AlCl3,which guides intimate adsorption and in-situ self-assembly of the generated Al nanocrystals.The distinctive 0D-over-1D Al@CFs provides long 1D conductive networks for electron transfer,ultrafine 0D Al nanocrystals for fast lithiation and excellent buffering effect for volume change,thus exhibiting high structure stability and superior lithium storage performance.This work paves the way for mild and controllable synthesis of Al-based nanomaterials for new high-value applications.
基金supported by the National Natural Science Foundation of China(51902007)。
文摘Water pollution regarding dyes and heavy metal ions is crucial facing the world.How to effectively separate these contaminants from water has been a key issue.Graphene oxide(GO)promises the greenwater world as a long-lasting spotlight adsorbent material and therefore,harnessing GO has been the research hotspot for over a decade.The state of GO as well as its surface functional groups plays an important role in adsorption.And the way of preparation and structural modification matters to the performance of GO.In this review,the significance of the state of existence of stock GO and surface functional groups is explored in terms of preparation,structural modification,and adsorption.Besides,various adsorbates for GO adsorption are also involved,the discussion of which is rarely established elsewhere.
文摘The activated carbon with high surface area was prepared by KOH activation.It was further modified by H2SO4 and HNO3 to introduce more surface functional groups.The pore structure of the activated carbons before and after modification was analyzed based on the nitrogen adsorption isotherms.The morphology of those activated carbons was characterized using scanning electronic microscopy (SEM).The surface functional groups were determined by Fourier transform infrared spectroscopy (FTIR).The quantity of those groups was measured by the Boehm titration method.Cr(VI) removal by the activated carbons from aqueous solution was investigated at different pH values.The results show that compared with H2SO4,HNO3 destructs the original pore of the activated carbon more seriously and induces more acidic surface functional groups on the activated carbon.The pH value of the solution plays a key role in the Cr(VI) removal.The ability of reducing Cr(VI) to Cr(III) by the activated carbons is relative to the acidic surface functional groups.At higher pH values,the Cr(VI) removal ratio is improved by increasing the acidic surface functional groups of the activated carbons.At lower pH values,however,the acidic surface functional groups almost have no effect on the Cr(VI) removal by the activated carbon from aqueous solution.
基金funded by the National Natural Science Foundation of China (52100072)the Beijing Natural Science Foundation(8214056)+2 种基金the special fund of Beijing Key Laboratory of Clean Fuels and Efficient Catalytic Emission Reduction Technology,the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA21021101)the National Key Research and Development Program of China (2019YFA0705803)Scientific Research Common Program of Beijing Municipal Commission of Education(KM202010017006)。
文摘FeO;supported on activated carbon(AC) has been shown to be an ideal catalyst for catalytic wet peroxide oxidation(CWPO) due to its high CWPO reaction activity and stability. Although there have been some studies on the mechanism of Fe/AC catalysis in CWPO, the specific contribution of each component(surface oxygen groups and FeOxon AC) inside an Fe/AC catalyst and their corresponding reaction mechanism remain unclear, and the reaction stability of CWPO catalysts has rarely been discussed. Then the optimal CWPO catalyst in our laboratory, 3%Fe/AC, was selected.(1) By removing certain components on the AC through heat treatment, its contribution to the reaction and the corresponding reaction mechanism were investigated. With the aid of temperature-programmed desorption–mass spectrometry(TPD–MS) and the CWPO reaction, the normalized catalytic contributions of components were shown to be: 37.3%(carboxylic groups), 5.3%(anhydride), 19.3%(ether/hydroxyl),-71.4%(carbonyl groups) and 100%(FeOx),respectively. DFT calculation and EPR analysis confirmed that carboxylic groups and Fe_(2)O_(3) are able to activate the H_(2)O_(2) to generate·OH.(2) The catalysts at were characterized at different reaction times(0 h, 450 h, 900 h, 1350 h, and 1800 h) by TPD–MS and M?ssbauer spectroscopy. Results suggested that the number of carboxylic goups gradually increased and the size of paramagnetic Fe_(2)O_(3) particle crystallites gradually increased as the reactions progressed. The occurrence of strong interactions between metal oxides and AC was also confirmed. Due to these effects, the strong stability of 3%Fe/AC was further improved. Therefore, the reasons for the high activity and strong stability of 3%Fe/AC in CWPO were clearly shown. We believe that this work provides an idea of the removal of cresols from wastewater into the introduction to show the potential applications of CWPO.
文摘The oxidation heat of coal is the direct reason leading to coal spontaneous combustion. When coal is exposed in oxygen atmosphere, the physical adsorption and chemisorption happened, and then which resulting chemical reaction followed heat between coal and oxygen. Owing to the complexity and uncertain of molecular structure of coal,it was only reduced that bridge bonds, side chains and O 2 containing functional groups in coal may be prone to oxidation in last year, but not to deeply investigate into the structures and the type of the active radicals. In this paper, according to the last achievements in coal structure research, the hypomethylether bond, hypoalkyl bond of α carbon atom with hydroxyl and α carbon atom with hypomethy side chain and hypomethyl bonds linking up two aromatic hydrocarbon in bridge bonds, and methoxy,aldehyde and alkyls of α carbon atom with hydroxy in side bonds are inferred to be free radical easily to lead to oxidize coal under the ambient temperature and pressure. The order from strong to weak of oxide activation of the seven surface active groups is aldehyde side chains, hypomethylether bonds, hypoalkyl bonds of α carbon atom with hydroxyl, hypoalkyl bonds of α carbon atom with hypomethyl, hypomethyl bonds linking up two aromatic hydrocarbon,methoxy, alkyls side chains of α carbon atom with hydroxyl. Because of the two unsaturated molecular tracks of O 2, unpaired electron clouds of the part of surface active groups of coal enter molecular tracks of O 2 to lead to chemisorb on the conjugate effect and induced effect of surface active groups, and then chemical reaction followed heat happens in them. On the basis of change of bond energy, weighted average method is adopted to count the reaction heat value of each mol CO,CO 2 and H 2O. The property of coal spontaneous combustion is different for the different number and oxidability of the active structure in the coal resulting in the different oxidation heat.
基金part of the Innovation Program for Undergraduate supported by China University of Mining & Technology,Beijing.
文摘A series of activated carbons(ACs) were prepared using HNO_3,H_2O_2 and steam as activation agents with the aim to introduce functional groups to carbon surface in the ACs preparation process.The effects of concentration of activation agent,activation time on the surface functional groups and redox property of ACs were characterized by Temperature Program Desorption(TPD) and Cyclic Voltammetry(CV).Results showed that lactone groups of ACs activated by HNO_3 increase with activation time,and the carboxyl groups increase with the concentration of HNO_3.Carbonyl/quinine groups of ACs activated by H_2O_2 increase with the activation time and the concentration of H_2O_2,although the acidic groups decrease with the concentration of H_2O_2.The redox property reflected by CV at 0 and 0.5 V is different with any kinds of oxygen functional groups characterized by TPD,but it is consistent with the SO_2 catalytic oxidization /oxidation properties indicated by TPR.
基金supported by the National Natural Science Foundation of China(21703147 and U1401248)the support of China Scholarship Council(2018SLJ022487)。
文摘MXenes are a novel family of two-dimensional(2D)materials that are fast gaining popularity due to their versatile characteristics.The surfaces of these materials are often functionalized by negatively charged terminal groups,such as=O,OH,and F during their synthesis,and it has been hypothesized that regulating the surface terminators enables to control the material characteristics.However,there is still a large gap between computational and experimental investigations regarding comprehending the surface functional groups.Surfaces with mixed terminations are consistently synthesized in experiments,although pure terminated surfaces are predicted by computational research.Here we summarized the nature of chemical bonding in transition metal carbide materials(MXenes)by1H and19F nuclear magnetic resonance(NMR),Raman,X-ray absorption near edge structure(XANES),extended X-ray absorption fine structure(EXAFS),ultraviolet photoelectron spectroscopy(UPS),X-ray photoelectron spectroscopy(XPS)/scanning transmission electron microscopy(STEM),and thermogravimetric analysis-mass spectrometry(TGA-MS)characterizations.Previous literature reveals that=O,–OH,–F,and–Cl are typical MXene surface terminators.However,recent comparative investigations on the valence band intensity distribution in MXenes reveal that the–OH cannot be considered an intrinsic termination species in MXenes.The surface terminals(=O,–OH,–F,and–Cl)of several MXenes,particularly V2CTxand Ti3C2Tx,will be identified and quantified here.We have also discussed different etching approaches for the synthesis of MXene,the dependence of MXene conductivity on MXene terminating groups,and the emission of various gaseous products that evolved during its chemical transformations.This paper provides significance,especially in the field of energy conversion and storage materials,where the intercalation process is crucial.
文摘This article discussed the benzoic acid activated carbons which have changed the types and content of acid oxygen-function groups on the surface of activated carbons and their effect on the adsorption for Hg^0 in simulated flue gas at 140 ℃. These surface acid oxygen function groups were identified by Boehm titration, Fourier transformation infrared spectrum, temperature programmed desorption and X-ray photoelectron spectroscopy. It indicates that the carboxyl, lactone and phenolic were formed when the benzoic acid is loaded on the surface of activated carbons. Among the surface acid oxygen function groups, the carboxyl groups enhance the adsorption capacities of Hg^0 for activated carbons to a greater extent.
基金the National Natural Science Foundation of China(No.52374279)the Natural Science Foundation of Shaanxi Province(No.2023-YBGY-055).
文摘Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery and the high-value utilization of residual carbon(RC)in FS are the keys to realizing the win-win situation of the coal chemical industry in terms of economic and environmental benefits.The structural properties,such as pore,surface functional group,and microcrystalline structures,of RC in FS(FS-RC)not only affect the flotation recovery efficiency of FS-RC but also form the basis for the high-value utilization of FS-RC.In this paper,the characteristics of FS-RC in terms of pore structure,surface functional groups,and microcrystalline structure are sorted out in accordance with gasification type and FS particle size.The reasons for the formation of the special structural properties of FS-RC are analyzed,and their influence on the flotation separation and high-value utilization of FS-RC is summarized.Separation methods based on the pore structural characterist-ics of FS-RC,such as ultrasonic pretreatment-pore-blocking flotation and pore breaking-flocculation flotation,are proposed to be the key development technologies for improving FS-RC recovery in the future.The design of low-cost,low-dose collectors containing polar bonds based on the surface and microcrystalline structures of FS-RC is proposed to be an important breakthrough point for strengthening the flotation efficiency of FS-RC in the future.The high-value utilization of FS should be based on the physicochemical structural proper-ties of FS-RC and should focus on the environmental impact of hazardous elements and the recyclability of chemical waste liquid to es-tablish an environmentally friendly utilization method.This review is of great theoretical importance for the comprehensive understand-ing of the unique structural properties of FS-RC,the breakthrough of the technological bottleneck in the efficient flotation separation of FS,and the expansion of the field of the high value-added utilization of FS-RC.
文摘In this study, the surface chemical properties of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) grown by catalytic decomposition of methane on nickel and cobalt based catalysts were studied by DRIFT (Diffuse Reflectance Infrared Fourier Transform) and transmission Infrared (IR) spectroscopy. The results show that the surface exists not only carbon-hydrogen groups, but also carboxyl, ketene or quinone (carbonyl) oxygen-containing groups. These functional groups were formed in the process of the material growth, which result in large amount of chemical defect sites on the walls.
基金Financial support from the National Natural Science Foundation of China (22075320)。
文摘To achieve high energy density in lithium batteries,the construction of lithium-ion/metal hybrid anodes is a promising strategy.In particular,because of the anisotropy of graphite,hybrid anode formed by graphite/Li metal has low transport kinetics and is easy to causes the growth of lithium dendrites and accumulation of dead Li,which seriously affects the cycle life of batteries and even causes safety problems.Here,by comparing graphite with two types of hard carbon,it was found that hybrid anode formed by hard carbon and lithium metal,possessing more disordered mesoporous structure and lithophilic groups,presents better performance.Results indicate that the mesoporous structure provides abundant active site and storage space for dead lithium.With the synergistic effect of this structure and lithophilic functional groups(–COOH),the reversibility of hard carbon/lithium metal hybrid anode is maintained,promoting uniform deposition of lithium metal and alleviating formation of lithium dendrites.The hybrid anode maintains a 99.5%Coulombic efficiency(CE)after 260 cycles at a specific capacity of 500 m Ah/g.This work provides new insights into the hybrid anodes formed by carbon-based materials and lithium metal with high specific energy and fast charging ability.
文摘The paper analyzed the groups naked and the transformed of fibrous brucite, wollastonite, chrysotile asbestos, sepiolite, palygorskite, clinoptilolite, crocidolite and diatomaceous earth mineral dusts by using IR under acid and alkali etched, strong mechanical and polarized molecular interaction. The results show that the active site focuses on ends in stick dusts and on defects or hole edges in pipe dusts. The inside active sites of dusts play the main role in small molecular substance. The shape of dusts affects their distributions and densities of active sites. The strong mechanical and weak chemical force make the active site feature of minerals change, the powder process brings about more naked surface groups and more combined types. The dust activity relates to the type, contribution, and naked level of surface groups. The studied dust surface groups are mainly as follows: OH?, Mg(OH)?, Si-O-Si, Ca-O-Si, -Mg-OH2,-Al(Si)-OH, -Mg(Ca)-OH2, Ca-O,-Si???OH, Mg(Fe)-OH. Due to the difference of surface composition and structure, the minerals have a large disparity on activity and character of surface groups. The one side surface group of chrysotile layer is the same as fibrous brucite and stripped layer with more naked group. The fibrous sepiolite and palygorskite surface OH? similar to crocidolite is naked with their surface structural defects and cleavage. The more development of mineral defects, the higher of OH? (H2O+) content, the main H2O+ of clinoptilolite is partly transformed into H+, NH 4 + or OH?. The acid etched process may change OH? concentration, distribution and increase the defects and porosity of mineral fiber surface. The alkali etched has no effect on Si-O, Si-OH etc. and destroyed Al-O, Al-OH? acid site of sepiolite, palygorskite and clinoptilolite. Some surface groups of remnant differ from original dusts. The surface process of small polarized molecular or middle moleular’s branch may produce ionation and new coordinate bond, and change the active properties and level of original dusts, such as the porous minerals producing
基金supported by the National Natural Science Foundation of China (No.52006054)the State Key Laboratory of Engines at Tianjin University (No.K2021-05)+1 种基金the European Union’s projects MODALES (No.815189)nPETS (No.954377)
文摘The thermal deactivation of diesel soot particles exerts a significant influence on the control strategy for the regeneration of diesel particulate filters(DPFs).This work focused on the changes in the surface functional groups,carbon chemical state,and graphitization degree during thermal treatment in an inert gas environment at intermediate temperatures of 600℃,800℃,and 1000℃ and explore the chemical species that were desorbed from the diesel soot surface during thermal treatment using a thermogravimetric analyser coupled with a gas-chromatograph mass spectrometer(TGA-GC/MS).The surface functional groups and carbon chemical statewere characterized using Fourier transform infrared spectroscopy(FT-IR)and X-ray photoelectron spectroscopy(XPS).The graphitization degree was evaluated by means of Raman spectroscopy(RS).The concentrations of aliphatic C–H,C–OH,C=O,and O–C=O groups are reduced for diesel soot and carbon black when increasing the thermal treatment temperature,while the sp^(2)/sp^(3) hybridized ratio and graphitization degree enhance.These results provide comprehensive evidence of the decreased reactivity of soot samples.Among oxygenated functional groups,the percentage reduction during thermal treatment is the largest for the O–C=O groups owing to its worst thermodynamic stability.TGA-GC/MS results show that the aliphatic and aromatic chains and oxygenated species would be desorbed from the soot surface during 1000℃ thermal treatment of diesel soot.
基金This study was supported by the National Natural Science Foundation of China(Grant Nos.52272125 and 51902271)the Fundamental Research Funds for the Central Universities(Grant Nos.2682021CX116,2682020CX07,and 2682020CX08)Sichuan Science and Technology Program(Grant Nos.2020YJ0259,2020YJ0072,and 2021YFH0163).We would like to thank Analysis and Testing Center of Southwest Jiaotong University for the assistance on material characterization.
文摘Photocatalytic CO_(2) reduction to valuable chemical compounds could be a promising approach for carbon-neutral practice.In this work,a simple and robust thermal decomposition process was developed with ammonium carbonate((NH4)2CO3)as both precipitation agent and sacrificial template to produce fine Nb_(2)O_(5) nanoparticles with the rich existence of surface hydroxyl(–OH)groups.It was found by density functional theory(DFT)calculations and experiments that the rich existence of the surface–OH groups enhanced the adsorption of both reactants(CO_(2) and H_(2)O molecules)for the photocatalytic CO_(2) reduction on these fine Nb_(2)O_(5) nanoparticles,and the highly selective conversion of CO_(2) to the high-value chemical compound of ethylene(C_(2)H_(4),~68μmol·g^(−1)·h^(−1) with~100%product selectivity)was achieved under simulated solar illumination without usage of any sacrificial agents or noble metal cocatalysts.This synthesis process may also be readily applied as a surface engineering method to enrich the existence of the surface–OH groups on various metal oxide-based photocatalysts for a broad range of technical applications.
基金supported by the National Natural Science Foundation of China(51872115,51932003)2020 International Cooperation Project of the Department of Science and Technology of Jilin Province(20200801001GH).
文摘It is well known that two-dimensional(2D)MXene-derived quan-tum dots(MQDs)inherit the excellent physicochemical properties of the parental MXenes,as a Chinese proverb says,“Indigo blue is extracted from the indigo plant,but is bluer than the plant it comes from.”Therefore,0D QDs harvest larger surface-to-volume ratio,outstanding optical properties,and vigorous quantum confinement effect.Currently,MQDs trigger enormous research enthusiasm as an emerging star of functional materials applied to physics,chemistry,biology,energy conversion,and storage.Since the surface properties of small-sized MQDs include the type of surface functional groups,the functionalized surface directly determines their performance.As the Nobel Laureate Wolfgang Pauli says,“God made the bulk,but the surface was invented by the devil,”and it is just on the basis of the abundant surface functional groups,there is lots of space to be thereof excavated from MQDs.We are witnessing such excellence and even more promising to be expected.Nowadays,MQDs have been widely applied to catalysis,whereas the related reviews are rarely reported.Herein,we provide a state-of-the-art overview of MQDs in catalysis over the past five years,ranging from the origin and development of MQDs,synthetic routes of MQDs,and functionalized MQDs to advanced characterization techniques.To explore the diversity of catalytic application and perspectives of MQDs,our review will stimulate more efforts toward the synthesis of optimal MQDs and thereof designing high-performance MQDs-based catalysts.
基金supported by the National Natural Science Foundation of China(52272295,51977071,and 51802040)the Science and Technology Innovation Program of Hunan Province(2021RC3066)Natural Science Foundation of Hunan Province(2020JJ4192).
文摘MXenes have captured extensive attention in various fields by virtue of unique hydrophilicity,high conductivity and tunable surface terminations.In this review,the state-of-the-art progresses of designing functional MXenes have been summarized.Firstly,the synthesis methods of MXenes are summarized and classified into HF etching,in-situ HF etching and fluoride-free etching approaches based on the effect on the surface chemistry of MXenes.Secondly,the factors that affect the surface termination groups are discussed,including synthesis methods,heat treatment temperature and atmosphere.Thirdly,this review gives an overview of the synthetic routes of functional MXenes including termination modification by synthesis methods and heat treatment,heteroatom(N,S,or P)doping,cation and organic molecule intercalation and hybridization with polymer,which inhibit restacking and increase active sites for intrinsically enhancing the inherent physical and chemical properties of MXenes.Finally,the applications with respect to energy storage and conversion,catalysis,sensors,electromagnetic interference shielding and microwave absorption of functional MXenes are introduced.Additionally,the critical challenges and development prospects of functional MXenes are also highlighted.
基金Supported by the National Natural Science Foundation of China(No.2 0 0 0 30 0 5 ) and the Natural Science Foundation ofJiangsu Province(No.BQ2 0 0 0 0 0 9)
文摘The effect of the improvement of commercial activated carbon(AC) on its specific capacitance and high rate capability of double layer(dl) charging/discharging process has been studied. The improvement of AC was carried out \%via\% a secondary activation under steam in the presence of catalyst NiCl\-2, and the suitable condition was found to be a heat treatment at about 875 ℃ for 1 h. Under those conditions, the discharge specific capacitance of the improved AC increases up to 53.67 F/g, showing an increase of about 25% as compared with that of as-received AC. The good rectangular-shaped voltammograms and A.C. impedance spectra prove that the high rate capability of the capacitor made of the improved AC is enhanced significantly. The capacitance resistance(RC) time constant of the capacitor containing the improved AC is 1\^74 s, which is much lower than that of the one containing as-received AC(an RC value of 4.73 s). It is noted that both kinds of AC samples show a similar specific surface area and pore size distribution, but some changes have taken place in the carbon surface groups, especially a decrease in the concentration of surface carbonyl groups after the improvement, which have been verified by means of X-photoelectron spectroscopy. Accordingly, it is suggested that the decrease in the concentration of surface carbonyl groups for the improved AC is beneficial to the organic electrolyte ion penetrating into the pores, thus leading to the increase in both the specific capacitance and high rate capability of the supercapacitor.