Irradiation makes structural materials of nuclear reactors degraded and failed.However,the damage process of materials induced by irradiation is not fully elucidated,mostly because the charged particles only bombarded...Irradiation makes structural materials of nuclear reactors degraded and failed.However,the damage process of materials induced by irradiation is not fully elucidated,mostly because the charged particles only bombarded the surface of the materials(within a few microns).In this work,we investigated the effects of surface irradiation on the indirect irradiation region of the(Al0.3Cr0.2Fe0.2Ni0.3)3O4 high entropy oxide(HEO)films in detail by plasma surface interaction.The results show that the damage induced by surface irradiation significantly extends to the indirect irradiation region of HEO film where the helium bubbles,dislocations,phase transformation,and the nickel oxide segregation were observed.展开更多
We predict ultrafast modulation of the pure molten metal surface stress fields under the irradiation of the single femtosecond laser pulse through the two-temperature model molecular-dynamics simulations. High-resolut...We predict ultrafast modulation of the pure molten metal surface stress fields under the irradiation of the single femtosecond laser pulse through the two-temperature model molecular-dynamics simulations. High-resolution and precision calculations are used to resolve the ultrafast laser-induced anisotropic relaxations of the pressure components on the time-scale comparable to the intrinsic liquid density relaxation time. The magnitudes of the dynamic surface tensions are found being modulated sharply within picoseconds after the irradiation, due to the development of the nanometer scale non-hydrostatic regime behind the exterior atomic layer of the liquid surfaces.The reported novel regulation mechanism of the liquid surface stress field and the dynamic surface tension hints at levitating the manipulation of liquid surfaces, such as ultrafast steering the surface directional transport and patterning.展开更多
We have investigated the role of the ambient gas nature and pressure in the structure and appearance of the laser treated zone. and the influence of the total duration and temporal shape of laser pulse with the laser ...We have investigated the role of the ambient gas nature and pressure in the structure and appearance of the laser treated zone. and the influence of the total duration and temporal shape of laser pulse with the laser tight being λ= 10.6μm wavelength incident upon a metallic surface at intermediate taser intensities of 107-108 W / cm2. A plasma is accompanied by the action of the laser pulse, It acts as an active moderator among laser beam and target thus determining the final status of the contact surface展开更多
The hydrodynamic effects of molten surface of titanium alloy on the morphology evolution by intense pulsed ion beam (IPIB) irradiation are studied. It is experimentally revealed that under irradiation of IPIB pulses...The hydrodynamic effects of molten surface of titanium alloy on the morphology evolution by intense pulsed ion beam (IPIB) irradiation are studied. It is experimentally revealed that under irradiation of IPIB pulses, the surface morphology of titanium alloy in a spatial scale of μm exhibits an obvious smoothening trend. The mechanism of this phenomenon is explained by the mass transfer caused by the surface tension of molten metal. Hydrodynamic simulation with a combination of the finite element method and the level set method reveals that the change in curvature on the molten surface leads to uneven distribution of surface tension. Mass transfer is caused by the relief of surface tension, and meanwhile a flattening trend in the surface morphology evolution is achieved.展开更多
Surface irradiance measurements with high temporal resolution can be used to detect clear skies,which is a critical step for further study,such as aerosol and cloud radiative effects.Twenty-one clear-sky detection(CSD...Surface irradiance measurements with high temporal resolution can be used to detect clear skies,which is a critical step for further study,such as aerosol and cloud radiative effects.Twenty-one clear-sky detection(CSD)methods are assessed based on five years of 1-min surface irradiance data at Xianghe—a heavily polluted station on the North China Plain.Total-sky imager(TSI)discrimination results corrected by manual checks are used as the benchmark for the evaluation.The performance heavily relies on the criteria adopted by the CSD methods.Those with higher cloudy-sky detection accuracy rates produce lower clear-sky accuracy rates,and vice versa.A general tendency in common among all CSD methods is the detection accuracy deteriorates when aerosol loading increases.Nearly all criteria adopted in CSD methods are too strict to detect clear skies under polluted conditions,which is more severe if clear-sky irradiance is not properly estimated.The mean true positive rate(CSD method correctly detects clear sky)decreases from 45%for aerosol optical depth(AOD)≤0.2%to 6%for AOD>0.5.The results clearly indicate that CSD methods in a highly polluted region still need further improvements.展开更多
In this study, the polyacrylate intraocularr lens is irradiated by argon ion which can produce free radicals. In order to obtain better hydrophilic and lower platelets adhesion, monomer vinyl pyrrolidone (NVP) is graf...In this study, the polyacrylate intraocularr lens is irradiated by argon ion which can produce free radicals. In order to obtain better hydrophilic and lower platelets adhesion, monomer vinyl pyrrolidone (NVP) is grafted onto the hydrophobic polyacrylate intraocular lens surface in a certain reaction conditions. Specific changes in intraocular lens are detected by static contact angle (CA), scanning electron microscope (SEM) and light transmittance. The results show that this surface modification can greatly improve its hydrophilic character and surface formation.展开更多
The surface reconstructing of vermicular alpha-alumina exposed under electron-beam irradiation was investigated by a scanning electron microscope with 0.5 keV beam energy and by a transmittance electron microscope at ...The surface reconstructing of vermicular alpha-alumina exposed under electron-beam irradiation was investigated by a scanning electron microscope with 0.5 keV beam energy and by a transmittance electron microscope at room temperature and 90 K, respectively. The in-situ recorded results showed that the present electron-beam-induced surface reconstructing was both electron dose and temperature dependent and accompanied by bulk shape change. The surface reconstruction was explained by an Auger decay process, in which surface composition constancy was proposed by the equilibrium between electron stmulated reduction of Al2O3 and oxidation of aluminum by desorbed oxygen from bulk.展开更多
Surface solar irradiance(SSI)nowcasting(0-3 h)is an effective way to overcome the intermittency of solar energy and to ensure the safe operation of grid-connected solar power plants.In this study,an SSI estimate and n...Surface solar irradiance(SSI)nowcasting(0-3 h)is an effective way to overcome the intermittency of solar energy and to ensure the safe operation of grid-connected solar power plants.In this study,an SSI estimate and nowcasting system was established using the near-infrared channel of Fengyun-4A(FY-4A)geostationary satellite.The system is composed of two key components:The first is a hybrid SSI estimation method combining a physical clear-sky model and an empirical cloudy-sky model.The second component is the SSI nowcasting model,the core of which is the derivation of the cloud motion vector(CMV)using the block-matching method.The goal of simultaneous estimation and nowcasting of global horizontal irradiance(GHI)and direct normal irradiance(DNI)is fulfilled.The system was evaluated under different sky conditions using SSI measurements at Xianghe,a radiation station in the North China Plain.The results show that the accuracy of GHI estimation is higher than that of DNI estimation,with a normalized root-mean-square error(nRMSE)of 22.4%relative to 45.4%.The nRMSE of forecasting GHI and DNI at 30-180 min ahead varied within 25.1%-30.8%and 48.1%-53.4%,respectively.The discrepancy of SSI estimation depends on cloud occurrence frequency and shows a seasonal pattern,being lower in spring-summer and higher in autumn-winter.The FY-4A has great potential in supporting SSI nowcasting,which promotes the development of photovoltaic energy and the reduction of carbon emissions in China.The system can be improved further if calibration of the empirical method is improved.展开更多
Photolysis of some polycyclic aromatic hydrocarbons (PAHs) on soil surfaces may play an important role in the fate of PAHs in the environment.Photolysis of PAHs on soil surfaces under UV irradiation was investigated...Photolysis of some polycyclic aromatic hydrocarbons (PAHs) on soil surfaces may play an important role in the fate of PAHs in the environment.Photolysis of PAHs on soil surfaces under UV irradiation was investigated.The effects of oxygen,irradiation intensity and soil moisture on the degradation of the three PAHs were observed.The results showed that oxygen,soil moisture and irradiation intensity enhanced the photolysis of the three PAHs on soil surfaces.The degradation of the three PAHs on soil surfaces is related to their absorption spectra and the oxidation-half-wave potential.The photolysis of PAHs on soil surfaces in the presence of oxygen followed pseudo first-order kinetics.The photolysis half-lives ranged from 37.87 days for benzo[a]pyrene to 58.73 days for phenanthrene.The results indicate that photolysis is a successful way to remediate PAHs-contaminated soils.展开更多
The capture of orthophosphates and total phosphorus from the Pudong Canal river in the Pudong District of Shanghai by TiO2 nanoparticles is studied using a rotating photoreactor and the nano-TiO2 photocatalyst Degussa...The capture of orthophosphates and total phosphorus from the Pudong Canal river in the Pudong District of Shanghai by TiO2 nanoparticles is studied using a rotating photoreactor and the nano-TiO2 photocatalyst Degussa P25. The effects of UV irradiation intensity in a range of 20-74 mW/cm^2, the loading of the TiO2 nanoparticles in a range of 0.05-0.1 g/L, irradiation time up to 4 h, and pH values in a range of 2-10.5 on the capture efficiency are investigated. The results show that the capture of orthophosphates and total P are significantly enhanced by UV irradiation; at a loading of 0.1 g/L and an irradiation intensity above 36 mW/cm^2, orthophosphates and total phosphorus are rapidly captured by TiO2 nanoparticles, causing an observed reduction from 0.4 mg/L down to 0.02 mg/L. pH values in a range of 2-10.5 have little effect on the capture efficiency of orthophosphates and total phosphorus.展开更多
Ti–Al surface alloy was fabricated using a cyclic pulsed liquid-phase mixing of predeposited 100 nm Al film with a-Ti substrate by low-energy high-current electron beam. Electron probe micro-analysis(EPMA),grazing ...Ti–Al surface alloy was fabricated using a cyclic pulsed liquid-phase mixing of predeposited 100 nm Al film with a-Ti substrate by low-energy high-current electron beam. Electron probe micro-analysis(EPMA),grazing incidence X-ray diffraction analysis(GIXRD),transmission electron microscopy(TEM), and nanoindentation were used to investigate the characterization of Ti–Al surface alloy. The experimental results show that the thickness of alloy layer is *3 lm, and the content of Al in the *1 lm thickness surface layer is *60 at%. The tetragonal TiAl and TiAl2intermetallics were synthesized at the top surface, which have nanocrystalline structure.The main phase formed in the *2.5 lm thick surface is TiAl, and there are few TiAl2and Ti3Al phase for the alloy.Dislocation is enhanced in the alloyed layer. The nanohardness of Ti–Al surface alloy increased significantly compared with a-Ti substrate due to the nanostructure and enhanced dislocation. Since the e-beam remelted repeatedly, the Ti–Al surface alloy mixed sufficiently with Ti substrate. Moreover, there is no obvious boundary between the alloyed layer and substrate.展开更多
基金National Key Research and Development Program of China(Grant No.2017YFB0405702)the National Natural Science Foundation of China(Grant No.11775150).
文摘Irradiation makes structural materials of nuclear reactors degraded and failed.However,the damage process of materials induced by irradiation is not fully elucidated,mostly because the charged particles only bombarded the surface of the materials(within a few microns).In this work,we investigated the effects of surface irradiation on the indirect irradiation region of the(Al0.3Cr0.2Fe0.2Ni0.3)3O4 high entropy oxide(HEO)films in detail by plasma surface interaction.The results show that the damage induced by surface irradiation significantly extends to the indirect irradiation region of HEO film where the helium bubbles,dislocations,phase transformation,and the nickel oxide segregation were observed.
基金the National Key R&D Program of China (Grant No. 2019YFA0705000)the National Natural Science Foundation of China (Grant Nos. 11874147, 11933005, and 12134001)+3 种基金the Science and Technology Commission of Shanghai Municipality (Grant No. 21DZ1101500)the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01)the Natural Science Foundation of Chongqing, China (Grant No. cstc2021jcyj-msxm X1144)the State Key Laboratory of Solidification Processing in NWPU (Grant No. SKLSP202105)。
文摘We predict ultrafast modulation of the pure molten metal surface stress fields under the irradiation of the single femtosecond laser pulse through the two-temperature model molecular-dynamics simulations. High-resolution and precision calculations are used to resolve the ultrafast laser-induced anisotropic relaxations of the pressure components on the time-scale comparable to the intrinsic liquid density relaxation time. The magnitudes of the dynamic surface tensions are found being modulated sharply within picoseconds after the irradiation, due to the development of the nanometer scale non-hydrostatic regime behind the exterior atomic layer of the liquid surfaces.The reported novel regulation mechanism of the liquid surface stress field and the dynamic surface tension hints at levitating the manipulation of liquid surfaces, such as ultrafast steering the surface directional transport and patterning.
文摘We have investigated the role of the ambient gas nature and pressure in the structure and appearance of the laser treated zone. and the influence of the total duration and temporal shape of laser pulse with the laser tight being λ= 10.6μm wavelength incident upon a metallic surface at intermediate taser intensities of 107-108 W / cm2. A plasma is accompanied by the action of the laser pulse, It acts as an active moderator among laser beam and target thus determining the final status of the contact surface
基金Supported by the National Natural Science Foundation of China under Grant No 1175012the China Postdoctoral Science Foundation under Grant No 2016M600897the National Science and Technology Major Project of the Ministry of Science and Technology of China under Grant No 2013ZX04001-071
文摘The hydrodynamic effects of molten surface of titanium alloy on the morphology evolution by intense pulsed ion beam (IPIB) irradiation are studied. It is experimentally revealed that under irradiation of IPIB pulses, the surface morphology of titanium alloy in a spatial scale of μm exhibits an obvious smoothening trend. The mechanism of this phenomenon is explained by the mass transfer caused by the surface tension of molten metal. Hydrodynamic simulation with a combination of the finite element method and the level set method reveals that the change in curvature on the molten surface leads to uneven distribution of surface tension. Mass transfer is caused by the relief of surface tension, and meanwhile a flattening trend in the surface morphology evolution is achieved.
基金supported by the National Key R&D Program of China grant number 2017YFA0603504the Strategic Priority Research Program of the Chinese Academy of Sciences grant number XDA17010101the National Natural Science Foundation of Chinagrant number 41875183。
文摘Surface irradiance measurements with high temporal resolution can be used to detect clear skies,which is a critical step for further study,such as aerosol and cloud radiative effects.Twenty-one clear-sky detection(CSD)methods are assessed based on five years of 1-min surface irradiance data at Xianghe—a heavily polluted station on the North China Plain.Total-sky imager(TSI)discrimination results corrected by manual checks are used as the benchmark for the evaluation.The performance heavily relies on the criteria adopted by the CSD methods.Those with higher cloudy-sky detection accuracy rates produce lower clear-sky accuracy rates,and vice versa.A general tendency in common among all CSD methods is the detection accuracy deteriorates when aerosol loading increases.Nearly all criteria adopted in CSD methods are too strict to detect clear skies under polluted conditions,which is more severe if clear-sky irradiance is not properly estimated.The mean true positive rate(CSD method correctly detects clear sky)decreases from 45%for aerosol optical depth(AOD)≤0.2%to 6%for AOD>0.5.The results clearly indicate that CSD methods in a highly polluted region still need further improvements.
基金National Natural Science of Foundation of Chinagrant number:81070716
文摘In this study, the polyacrylate intraocularr lens is irradiated by argon ion which can produce free radicals. In order to obtain better hydrophilic and lower platelets adhesion, monomer vinyl pyrrolidone (NVP) is grafted onto the hydrophobic polyacrylate intraocular lens surface in a certain reaction conditions. Specific changes in intraocular lens are detected by static contact angle (CA), scanning electron microscope (SEM) and light transmittance. The results show that this surface modification can greatly improve its hydrophilic character and surface formation.
基金Funded by the National Natural Science Foundation of China(No.51402097)the National Science Foundation of Hubei Province(No.2014CFB597)the State Key Laboratory of Advanced Technology for Material Synthesis and Processing(Wuhan University of Technology)(No.2017-KF-11)
文摘The surface reconstructing of vermicular alpha-alumina exposed under electron-beam irradiation was investigated by a scanning electron microscope with 0.5 keV beam energy and by a transmittance electron microscope at room temperature and 90 K, respectively. The in-situ recorded results showed that the present electron-beam-induced surface reconstructing was both electron dose and temperature dependent and accompanied by bulk shape change. The surface reconstruction was explained by an Auger decay process, in which surface composition constancy was proposed by the equilibrium between electron stmulated reduction of Al2O3 and oxidation of aluminum by desorbed oxygen from bulk.
基金supported by the National Natural Science Foundation of China(Grant Nos.42030608,41805021,and 51776051)the Beijing Natural Science Foundation(Grant No.8204072)Beijing Nova Program(Grant No.Z211100002121077).
文摘Surface solar irradiance(SSI)nowcasting(0-3 h)is an effective way to overcome the intermittency of solar energy and to ensure the safe operation of grid-connected solar power plants.In this study,an SSI estimate and nowcasting system was established using the near-infrared channel of Fengyun-4A(FY-4A)geostationary satellite.The system is composed of two key components:The first is a hybrid SSI estimation method combining a physical clear-sky model and an empirical cloudy-sky model.The second component is the SSI nowcasting model,the core of which is the derivation of the cloud motion vector(CMV)using the block-matching method.The goal of simultaneous estimation and nowcasting of global horizontal irradiance(GHI)and direct normal irradiance(DNI)is fulfilled.The system was evaluated under different sky conditions using SSI measurements at Xianghe,a radiation station in the North China Plain.The results show that the accuracy of GHI estimation is higher than that of DNI estimation,with a normalized root-mean-square error(nRMSE)of 22.4%relative to 45.4%.The nRMSE of forecasting GHI and DNI at 30-180 min ahead varied within 25.1%-30.8%and 48.1%-53.4%,respectively.The discrepancy of SSI estimation depends on cloud occurrence frequency and shows a seasonal pattern,being lower in spring-summer and higher in autumn-winter.The FY-4A has great potential in supporting SSI nowcasting,which promotes the development of photovoltaic energy and the reduction of carbon emissions in China.The system can be improved further if calibration of the empirical method is improved.
基金supported by the National Science Foundation for Young Scholars of China(No.41101474)the Open Foundation of Key Laboratory of Industrial Ecology and Environmental Engineering(No.KLIEEE-09-04)+1 种基金the Liaoning Doctoral Funds(No.20111076)Liaoning University Environment Institute Key Discipline Project(No.2012J-001)
文摘Photolysis of some polycyclic aromatic hydrocarbons (PAHs) on soil surfaces may play an important role in the fate of PAHs in the environment.Photolysis of PAHs on soil surfaces under UV irradiation was investigated.The effects of oxygen,irradiation intensity and soil moisture on the degradation of the three PAHs were observed.The results showed that oxygen,soil moisture and irradiation intensity enhanced the photolysis of the three PAHs on soil surfaces.The degradation of the three PAHs on soil surfaces is related to their absorption spectra and the oxidation-half-wave potential.The photolysis of PAHs on soil surfaces in the presence of oxygen followed pseudo first-order kinetics.The photolysis half-lives ranged from 37.87 days for benzo[a]pyrene to 58.73 days for phenanthrene.The results indicate that photolysis is a successful way to remediate PAHs-contaminated soils.
基金the Innovation Research Grant (13YZ130)the Leading Academic Discipline Project(J51803) from the Shanghai Education Committeefor the research fund from Shanghai Pudong Hydrology and Water Resource Administration
文摘The capture of orthophosphates and total phosphorus from the Pudong Canal river in the Pudong District of Shanghai by TiO2 nanoparticles is studied using a rotating photoreactor and the nano-TiO2 photocatalyst Degussa P25. The effects of UV irradiation intensity in a range of 20-74 mW/cm^2, the loading of the TiO2 nanoparticles in a range of 0.05-0.1 g/L, irradiation time up to 4 h, and pH values in a range of 2-10.5 on the capture efficiency are investigated. The results show that the capture of orthophosphates and total P are significantly enhanced by UV irradiation; at a loading of 0.1 g/L and an irradiation intensity above 36 mW/cm^2, orthophosphates and total phosphorus are rapidly captured by TiO2 nanoparticles, causing an observed reduction from 0.4 mg/L down to 0.02 mg/L. pH values in a range of 2-10.5 have little effect on the capture efficiency of orthophosphates and total phosphorus.
基金financially supported by the National Natural Science Foundation of China and the Russian Foundation for Basic Research (No. 11011120081)Large Scientific Facilities of the National Natural Science Foundation of China and of the Chinese Academy of Sciences (No. 11079012)the National Natural Science Foundation of China (No. 10875021)
文摘Ti–Al surface alloy was fabricated using a cyclic pulsed liquid-phase mixing of predeposited 100 nm Al film with a-Ti substrate by low-energy high-current electron beam. Electron probe micro-analysis(EPMA),grazing incidence X-ray diffraction analysis(GIXRD),transmission electron microscopy(TEM), and nanoindentation were used to investigate the characterization of Ti–Al surface alloy. The experimental results show that the thickness of alloy layer is *3 lm, and the content of Al in the *1 lm thickness surface layer is *60 at%. The tetragonal TiAl and TiAl2intermetallics were synthesized at the top surface, which have nanocrystalline structure.The main phase formed in the *2.5 lm thick surface is TiAl, and there are few TiAl2and Ti3Al phase for the alloy.Dislocation is enhanced in the alloyed layer. The nanohardness of Ti–Al surface alloy increased significantly compared with a-Ti substrate due to the nanostructure and enhanced dislocation. Since the e-beam remelted repeatedly, the Ti–Al surface alloy mixed sufficiently with Ti substrate. Moreover, there is no obvious boundary between the alloyed layer and substrate.