This paper investigates the characteristics of surface mobility when power transmission over the contact area between sub-structures is considered. An analytical formula of the surface mobility of an infinite homogene...This paper investigates the characteristics of surface mobility when power transmission over the contact area between sub-structures is considered. An analytical formula of the surface mobility of an infinite homogeneous plate over a rectangular contact area subject to a uniform, conphase force excitation is derived by using complex power method and the concept of structural intensity. This formula provides a theoretical tool for investigating power transmission over the contact area between sub-structures. The influences of the size, the dimension and the aspect ratio of the contact area on power transmission are analyzed and described according to the results calculated, that provides an effectively theoretical method for investigation of vibration isolation.展开更多
A measuring method of surface mobility for an infinite plate subject to a uniform conphase velocity excitation is investigated. In the measurement, a finite plate is employed to simulate an infinite plate and a rigid ...A measuring method of surface mobility for an infinite plate subject to a uniform conphase velocity excitation is investigated. In the measurement, a finite plate is employed to simulate an infinite plate and a rigid cone is used to make a uniform conphase velocity excitation. A method to deduct the affect of additional mass is derived. The results of the measurement agree with that calculated theoretically.展开更多
Intelligent robot technology has great potential for application in polar scientific expedition.During the 24th Chinese Antarctic Expedition in the summer of 2007/08,our ice-snow surface mobile and low-flying robots w...Intelligent robot technology has great potential for application in polar scientific expedition.During the 24th Chinese Antarctic Expedition in the summer of 2007/08,our ice-snow surface mobile and low-flying robots were successfully employed for the first time in the Antarctic.This paper firstly gives a brief introduction to the intelligent robot technology developed abroad and used in the Antarctic,then focuses on the ice-snow surface mobile and low-flying robots developed by China as well as their field trials in the Antarctic.Moreover,the authors have considered the potential demand for the intelligent robot technology in China's Antarctic scientific expedition,in the hope of providing some reference for the future development of robot technologies.展开更多
The H-terminated diamond films, which exhibit high surface conductivity, have been used in high-frequency and high-power electronic devices. In this paper, the surface conductive channel on specimens from the same dia...The H-terminated diamond films, which exhibit high surface conductivity, have been used in high-frequency and high-power electronic devices. In this paper, the surface conductive channel on specimens from the same diamond film was obtained by hydrogen plasma treatment and by heating under a hydrogen atmosphere, respectively, and the surface carrier transport characteristics of both samples were compared and evaluated. The results show that the carrier mobility and carrier density of the sample treated by hydrogen plasma are 15 cm^2·V^(-1)·s^(-1) and greater than 5 × 1012 cm^(-2), respectively, and that the carrier mobilities measured at five different areas are similar. Compared to the hydrogen-plasma-treated specimen, the thermally hydrogenated specimen exhibits a lower surface conductivity, a carrier density one order of magnitude lower, and a carrier mobility that varies from 2 to 33 cm^2·V^(-1)·s^(-1). The activated hydrogen atoms restructure the diamond surface, remove the scratches, and passivate the surface states via the etching effect during the hydrogen plasma treatment process, which maintains a higher carrier density and a more stable carrier mobility.展开更多
文摘This paper investigates the characteristics of surface mobility when power transmission over the contact area between sub-structures is considered. An analytical formula of the surface mobility of an infinite homogeneous plate over a rectangular contact area subject to a uniform, conphase force excitation is derived by using complex power method and the concept of structural intensity. This formula provides a theoretical tool for investigating power transmission over the contact area between sub-structures. The influences of the size, the dimension and the aspect ratio of the contact area on power transmission are analyzed and described according to the results calculated, that provides an effectively theoretical method for investigation of vibration isolation.
文摘A measuring method of surface mobility for an infinite plate subject to a uniform conphase velocity excitation is investigated. In the measurement, a finite plate is employed to simulate an infinite plate and a rigid cone is used to make a uniform conphase velocity excitation. A method to deduct the affect of additional mass is derived. The results of the measurement agree with that calculated theoretically.
基金supported by the National High Technology Development Project of China under grant 2006AA04Z206 the National International Cooperation Program of China under grant 2008DFR70100
文摘Intelligent robot technology has great potential for application in polar scientific expedition.During the 24th Chinese Antarctic Expedition in the summer of 2007/08,our ice-snow surface mobile and low-flying robots were successfully employed for the first time in the Antarctic.This paper firstly gives a brief introduction to the intelligent robot technology developed abroad and used in the Antarctic,then focuses on the ice-snow surface mobile and low-flying robots developed by China as well as their field trials in the Antarctic.Moreover,the authors have considered the potential demand for the intelligent robot technology in China's Antarctic scientific expedition,in the hope of providing some reference for the future development of robot technologies.
基金financially supported by the National Natural Science Foundation of China (No. 51402013)the China Postdoctoral Science Foundation (No. 2015T80037)the Fundamental Research Funds for Central Universities (No. FRF-TP-15-052A2)
文摘The H-terminated diamond films, which exhibit high surface conductivity, have been used in high-frequency and high-power electronic devices. In this paper, the surface conductive channel on specimens from the same diamond film was obtained by hydrogen plasma treatment and by heating under a hydrogen atmosphere, respectively, and the surface carrier transport characteristics of both samples were compared and evaluated. The results show that the carrier mobility and carrier density of the sample treated by hydrogen plasma are 15 cm^2·V^(-1)·s^(-1) and greater than 5 × 1012 cm^(-2), respectively, and that the carrier mobilities measured at five different areas are similar. Compared to the hydrogen-plasma-treated specimen, the thermally hydrogenated specimen exhibits a lower surface conductivity, a carrier density one order of magnitude lower, and a carrier mobility that varies from 2 to 33 cm^2·V^(-1)·s^(-1). The activated hydrogen atoms restructure the diamond surface, remove the scratches, and passivate the surface states via the etching effect during the hydrogen plasma treatment process, which maintains a higher carrier density and a more stable carrier mobility.