期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Surface plasmon-enhanced dual-band infrared absorber for VO_x-based microbolometer application 被引量:3
1
作者 李琦 于兵强 +3 位作者 李兆峰 王晓峰 张紫辰 潘岭峰 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第8期265-270,共6页
We propose a periodic structure as an extra absorption layer(i.e., absorber) based on surface plasmon resonance effects, enhancing dual-band absorption in both middle wavelength infrared(MWIR) and long wavelength ... We propose a periodic structure as an extra absorption layer(i.e., absorber) based on surface plasmon resonance effects, enhancing dual-band absorption in both middle wavelength infrared(MWIR) and long wavelength infrared(LWIR)regions. Periodic gold disks are selectively patterned onto the top layer of suspended SiN/VO_2/SiN sandwich-structure.We employ the finite element method to model this structure in COMSOL Multiphysics including a proposed method of modulating the absorption peak. Simulation results show that the absorber has two absorption peaks at wavelengths λ =4.8 μm and λ = 9 μm with the absorption magnitudes more than 0.98 and 0.94 in MWIR and LWIR regions, respectively. In addition, the absorber achieves broad spectrum absorption in LWIR region, in the meanwhile, tunable dual-band absorption peaks can be achieved by variable heights of cavity as well as diameters and periodicity of disk. Thus, this designed absorber can be a good candidate for enhancing the performance of dual band uncooled infrared detector, furthermore, the manufacturing process of cavity can be easily simplified so that the reliability of such devices can be improved. 展开更多
关键词 surface plasmon resonance effects dual-band absorption vanadium oxide uncooled infrared detector
下载PDF
Photocatalytic seawater splitting by 2D heterostructure of ZnIn_(2)S_(4)/WO_(3) decorated with plasmonic Au for hydrogen evolution under visible light
2
作者 Huiqin An Yanjun Wang +9 位作者 Xing Xiao Jiaxin Liu Zhiyao Ma Tianxin Gao Wanyu Hong Lizhi Zhao Hong Wang Qingjun Zhu Shanshan Chen Zhen Yin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期55-63,I0003,共10页
Photocatalytic H_(2) evolution from seawater splitting presents a promising approach to tackle the fossil energy crisis and mitigate carbon emission due to the abundant source of seawater and sunlight on the earth.How... Photocatalytic H_(2) evolution from seawater splitting presents a promising approach to tackle the fossil energy crisis and mitigate carbon emission due to the abundant source of seawater and sunlight on the earth.However,the development of efficient photocatalysts for seawater splitting remains a formidable challenge.Herein,a 2D/2D ZnIn_(2)S_(4)/WO_(3)(ZIS/WO_(3))heterojunction nanostructure is fabricated to efficiently separate the photoinduced carriers by steering electron transfer from the conduction band minimum of WO_(3) to the valence band maximum of ZIS via constructing internal electric field.Subsequently,plasmonic Au nanoparticles(NPs)as a novel photosensitizer and a reduction cocatalyst are anchored on ZIS/WO_(3) surface to further enhance the optical absorption of ZIS/WO_(3) heterojunction and accelerate the catalytic conversion.The obtained Au/ZIS/WO_(3) photocatalyst exhibits an outstanding H_(2) evolution rate of 2610.6 or 3566.3μmol g^(-1)h~(-1)from seawater splitting under visible or full-spectrum light irradiation,respectively.These rates represent an impressive increase of approximately 7.3-and 6,6-fold compared to those of ZIS under the illumination of the same light source.The unique 2D/2D structure,internal electric field,and plasmonic metal modification together boost the photocatalytic H_(2) evolution rate of Au/ZIS/WO_(3),making it even comparable to H_(2) evolution from pure water splitting.The present work sheds light on the development of efficient photocatalysts for seawater splitting. 展开更多
关键词 Photocatalytic seawater splitting 2D/2D ZnIn_(2)S_(4)/WO_(3) surface plasmon resonance effect Interfacial electric field
下载PDF
Enhanced spin Hall effect of reflected light with guided-wave surface plasmon resonance 被引量:1
3
作者 YUANJIANG XIANG XING JIANG +2 位作者 QI YOU JUN GUO XIAOYU DAI 《Photonics Research》 SCIE EI 2017年第5期467-472,共6页
The photonic spin Hall effect(SHE) has been intensively studied and widely applied, especially in spin photonics.However, the SHE is weak and is difficult to detect directly. In this paper, we propose a method to enha... The photonic spin Hall effect(SHE) has been intensively studied and widely applied, especially in spin photonics.However, the SHE is weak and is difficult to detect directly. In this paper, we propose a method to enhance SHE with the guided-wave surface-plasmon resonance(SPR). By covering a dielectric with high refractive index on the surface of silver film, the photonic SHE can be greatly enhanced, and a giant transverse shift of horizontal polarization state is observed due to the evanescent field enhancement near the interface at the top dielectric layer and air. The maximum transverse shift of the horizontal polarization state with 11.5 μm is obtained when the thickness of Si film is optimum. There is at least an order of magnitude enhancement in contrast with the transverse shift in the conventional SPR configuration. Our research is important for providing an effective way to improve the photonic SHE and may offer the opportunity to characterize the parameters of the dielectric layer with the help of weak measurements and development of sensors based on the photonic SHE. 展开更多
关键词 SI Enhanced spin Hall effect of reflected light with guided-wave surface plasmon resonance
原文传递
A Bi/BiOI/(BiO)_2CO_3 heterostructure for enhanced photocatalytic NO removal under visible light 被引量:8
4
作者 Yanjuan Sun Jiazhen Liao +2 位作者 Fan Dong Sujuan Wu Lidong Sun 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第3期362-370,共9页
Narrow-band BiOI photocatalysts usually suffer from low photocatalysis efficiency under visible light exposure because of rapid charge recombination. In this work, to overcome this deficiency of photosensitive BiOI, o... Narrow-band BiOI photocatalysts usually suffer from low photocatalysis efficiency under visible light exposure because of rapid charge recombination. In this work, to overcome this deficiency of photosensitive BiOI, oxygen vacancies, Bi particles, and Bi2O2CO3 were co-induced in BiOI via a facile in situ assembly method at room temperature using NaBH4 as the reducing agent. In the synthesized ternary Bi/BiOI/(BiO)2CO3, the oxygen vacancies, dual heterojunctions (i.e., Bi/BiOI and Bi- OI/(BiO)2CO3), and surface plasmon resonance effect of the Bi particles contributed to efficient electron-hole separation and an increase in charge carrier concentration, thus boosting the overall visible light photocatalysis efficiency. The as-prepared catalysts were applied for the removal of NO in concentrations of parts per billion from air in continuous air flow under visible light illumination. Bi/BiOI/(BiO)2CO3 exhibited a highly enhanced NO removal ratio of 50.7%, much higher than that of the pristine BiOI (1.2%). Density functional theory calculations and experimental results revealed that the Bi/BiOI/(BiO)2CO3 composites promoted the production of reactive oxygen species for photocatalytic NO oxidation. Thus, this work provides a new strategy to modify narrow-band semiconductors and explore other bismuth-containing heterostructured visible-light-driven photocatalysts. 展开更多
关键词 BiOI Oxygen vacancy HETEROJUNCTION surface plasmon resonance effect NO oxidation
下载PDF
Novel indirect Z-scheme g-C3N4/Bi2MoO6/Bi hollow microsphere heterojunctions with SPR-promoted visible absorption and highly enhanced photocatalytic performance 被引量:9
5
作者 Ning Li Hang Gao +7 位作者 Xin Wang Sujun Zhao Da Lv Guoqing Yang Xueyun Gao Haikuan Fan Yangqin Gao Lei Ge 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第3期426-434,共9页
The surface plasmonic resonance(SPR)effect of Bi can effectively improve the light absorption abilities and photogenerated charge carrier separation rate.In this study,a novel ternary heterojunction of g-C3N4/Bi2MoO6/... The surface plasmonic resonance(SPR)effect of Bi can effectively improve the light absorption abilities and photogenerated charge carrier separation rate.In this study,a novel ternary heterojunction of g-C3N4/Bi2MoO6/Bi(CN/BMO/Bi)hollow microsphere was successfully fabricated through solvothermal and in situ reduction methods.The results revealed that the optimal ternary 0.4 CN/BMO/9 Bi photocatalyst exhibited the highest photocatalytic efficiency toward rhodamine B(RhB)degradation with nine times that of pure BMO.The DRS and valence band of the X-ray photoelectron spectroscopy spectrum demonstrate that the band structure of 0.4 CN/BMO/9 Bi is a z-scheme structure.Quenching experiments also provided solid evidence that the·O^2-(at-0.33 eV)is the main species during dye degradation,and the conduction band of g-C3N4 is only the reaction site,demonstrating that the transfer of photogenerated charge carriers of g-C3N4/Bi2 MoO 6/Bi is through an indirect z-scheme structure.Thus,the enhanced photocatalytic performance was mainly ascribed to the synergetic effect of heterojunction structures between g-C3N4 and Bi2MoO6 and the SPR effect of Bi doping,resulting in better optical absorption ability and a lower combination rate of photogenerated charge carriers.The findings in this work provide insight into the synergism of heterostructures and the SPR absorption ability in wastewater treatment. 展开更多
关键词 g-C3N4/Bi2MoO6/Bi Z-scheme catalyst surface plasmonic resonance effect Rhodamine B Visible light
下载PDF
A review on plasmonic enhancement of activity and selectivity in electrocatalytic CO_(2)reduction
6
作者 Jing XUE Zhenlin CHEN +1 位作者 Yuchao ZHANG Jincai ZHAO 《Frontiers in Energy》 SCIE EI CSCD 2024年第4期399-417,共19页
Utilizing plasmonic effects to assist electrochemical reactions exhibits a huge potential in tuning the reaction activities and product selectivity,which is most appealing especially in chemical reactions with multipl... Utilizing plasmonic effects to assist electrochemical reactions exhibits a huge potential in tuning the reaction activities and product selectivity,which is most appealing especially in chemical reactions with multiple products,such as CO_(2)reduction reaction(CO_(2)RR).However,a comprehensive review of the development and the underlying mechanisms in plasmon-assisted electrocatalytic CO_(2)RR remains few and far between.Herein,the fundamentals of localized surface plasmonic resonance(LSPR)excitation and the properties of typical plasmonic metals(including Au,Ag,and Cu)are retrospected.Subsequently,the potential mechanisms of plasmonic effects(such as hot carrier effects and photothermal effects)on the reaction performance in the field of plasmon-assisted electrocatalytic CO_(2)RR are summarized,which provides directions for the future development of this field.It is concluded that plasmonic catalysts exhibit potential capabilities in enhancing CO_(2)RR while more in situ techniques are essential to further clarify the inner mechanisms. 展开更多
关键词 localized surface plasmonic resonance(LSPR)effect plasmonic metals CO_(2)reduction reaction(CO_(2)RR) hot carrier effect photothermal effect
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部