The results of experimentaI studies about the characteristics of broken rock expansion and reconsolidation were briefly introduced in this paper, and the surface subsidence coefficient under critical mining conditions...The results of experimentaI studies about the characteristics of broken rock expansion and reconsolidation were briefly introduced in this paper, and the surface subsidence coefficient under critical mining conditions was also analysed based on the principle of expansion and reconsolidation of the broken rock strata, a equation to calculate the corresponding surface subsidence was finally produced. This calculation method can be used to calculate more accurately the convergence quantity of consolidated rocks in the broken zone of the working face. In addition, case analyses by using the introduced calculation method were conducted and satisfactory results were obtained.展开更多
The surface subsidence induced by mining is a complex problem, which is related with many complex and uncertain factors. Genetic programming (GP) has a good ability to deal with complex and nonlinear problems, there...The surface subsidence induced by mining is a complex problem, which is related with many complex and uncertain factors. Genetic programming (GP) has a good ability to deal with complex and nonlinear problems, therefore genetic programming approach is propesed to predict mining induced surface subsidence in this article. First genetic programming technique is introduced, second, surface subsidence genetic programming model is set up by selecting its main affective factors and training relating to practical engineering data, and finally, predictions are made by the testing of data, whose results show that the relative error is approximately less than 10%, which can meet the engineering needs, and therefore, this proposed approach is valid and applicable in predicting mining induced surface subsidence. The model offers a novel method to predict surface subsidence in mining.展开更多
There are many parameters influencing mining induced surface subsidence. These parameters usually interact with one another and some of them have the characteristic of fuzziness. Current approaches to predicting the s...There are many parameters influencing mining induced surface subsidence. These parameters usually interact with one another and some of them have the characteristic of fuzziness. Current approaches to predicting the subsidence cannot take into account of such interactions and fuzziness. In order to overcome this disadvantage, many mining induced surface subsidence cases were accumulated, and an artificial neuro fuzzy inference system(ANFIS) was used to set up 4 ANFIS models to predict the rise angle, dip angle, center angle and the maximum subsidence, respectively. The fitting and generalization prediction capabilities of the models were tested. The test results show that the models have very good fitting and generalization prediction capabilities and the approach can be applied to predict the mining induced surface subsidence.展开更多
The backfilling mining technology is a type of high-efficiency coal mining technology that is used to address the environmental issues caused by the caving mining technology.In this paper,the mechanical model of symme...The backfilling mining technology is a type of high-efficiency coal mining technology that is used to address the environmental issues caused by the caving mining technology.In this paper,the mechanical model of symmetrical laminated plate representing the overburden movement caused by the backfilling mining technology is established,and the governing differential equation of the motion of the overburden is derived.The boundary conditions of the mechanical model are put forward,and the analytical solution of the overburden movement and surface subsidence is obtained.The numerical model of the overburden movement and surface subsidence,under mining with backfilling,is established by means of the FLAC3D numerical software,which aims to systematically study the influence of backfilling compactness,mining thickness,and mining depth on the overburden movement and surface subsidence in backfilling mining.When the compactnessηis less than 70%,the overburden movement and surface subsidence is greater,while whenηis greater than 70%,the overburden movement and surface subsidence is reduced significantly.On this basis,the control mechanism of surface subsidence and overburden movement in backfilling mining is obtained.The suitable backfilling compactness is the key to controlling surface subsidence and overburden movement in backfilling mining.展开更多
The surface subsidence is a common environmental hazard in mined-out area. Based on careful analysis of the regularity of surface subsidence in mined-out area, we proposed a new time function based on Harris curve mod...The surface subsidence is a common environmental hazard in mined-out area. Based on careful analysis of the regularity of surface subsidence in mined-out area, we proposed a new time function based on Harris curve model in consideration of the shortage of current surface subsidence time functions. By analyzing the characteristics of the new time function, we found that it could meet the dynamic process, the velocity change process and the acceleration change process during surface subsidence. Then its rationality had been verified through project cases. The results show that the proposed time function model can give a good reflection of the regularity of surface subsidence in mined-out area and can accurately predict surface subsidence. And the prediction data of the model are a little greater than measured data on condition of proper measured data quantity, which is safety in the engineering. This model provides a new method for the analysis of surface subsidence in mined-out area and reference for future prediction, and it is valuable to engineering application.展开更多
The developed process and theoretical achievement for the technology of controlling surface subsidence by grouting separated layer in overburden is summarized in this paper. The research progress of the technology is ...The developed process and theoretical achievement for the technology of controlling surface subsidence by grouting separated layer in overburden is summarized in this paper. The research progress of the technology is discussed synthetically on the basis of practice and research results obtained at coal mine of China in recent years. According to the development tendency of mining under buildings, water bodies and railroads and the properties of the technology, the future research direction is proposed.展开更多
Monitoring and predicting of urban surface subsidence are important for urban disaster prevention and mitigation.In this paper,the Long Short-Term Memory(LSTM)network was used to predict the surface subsidence process...Monitoring and predicting of urban surface subsidence are important for urban disaster prevention and mitigation.In this paper,the Long Short-Term Memory(LSTM)network was used to predict the surface subsidence process of Changchun City from 2018 to 2020 based on PS-InSAR monitoring data.The results show that the prediction error of 57.89% of PS points in the LSTM network was less than 1mm with the average error of 1.8 mm and the standard deviation of 2.8 mm.The accuracy and reliability of the prediction were better than regression analysis,time series analysis and grey model.展开更多
Subsidence occurred in many parts of the world. particularly in densely populated deltaic regions, causing extremely expensive damage. It can be resulted from natural causes. man-made induced causes, or other mixed ca...Subsidence occurred in many parts of the world. particularly in densely populated deltaic regions, causing extremely expensive damage. It can be resulted from natural causes. man-made induced causes, or other mixed causes. For identifying surface subsidence, many techniques have been employed, for example, geodetic monitoring, airborne laser subsidence measurement system,differential S.A.R., interferometry DGPS, and satellite radar measurements. However. all these methods require large time span and a large amount of field work. With the development of GIS techniques, identification of surface subsidence is becoming a relative easy problem. Ruqigou coal mining area was selected as a case study to identify the surface subsidence with DEM (digital elevation model) overlaying techniques. The result shows that DEM overlaying technique is a very useful method on surface subsidence identification. The accuracy of the results are largely dependent on the precision of the data-input.展开更多
Under the condition of thick alluvia, there is biggish declination in predicting the coal mining subsidence by commonly strip design method compared with the practical observation, the sinkage is much smaller. Based o...Under the condition of thick alluvia, there is biggish declination in predicting the coal mining subsidence by commonly strip design method compared with the practical observation, the sinkage is much smaller. Based on the method of the probability integral about coal mining subsidence calculation, discussed the surface subsidence calculation and deduced the formulas caused by the clay with dewatering. The results show that the clay dewatering has great impact on surface subsidence. Therefore, the clay dewatering on surface subsidence should not be overlooked.展开更多
The GF-3 satellite was launched on August 10,2016 from the Taiyuan Satellite Launch Center and was put into operation at the end of January,2017.It has acquired nearly 100 thousand C-band multi-polarization ocean and ...The GF-3 satellite was launched on August 10,2016 from the Taiyuan Satellite Launch Center and was put into operation at the end of January,2017.It has acquired nearly 100 thousand C-band multi-polarization ocean and land SAR images,providing data support for many departments covering resource survey,typhoon early warning,disaster assessment,crop yield estimation and polar investigation.Recently,the team led by ZHANG Qingjun from展开更多
Coal is the primary energy resource in China. Thousands of underground coal mines are operating in China and cause severe land subsidence, leading to many environmental and engineering problems. Huainan (淮南) coal ...Coal is the primary energy resource in China. Thousands of underground coal mines are operating in China and cause severe land subsidence, leading to many environmental and engineering problems. Huainan (淮南) coal mine is the largest coal mining area in East China. Surface subsidence associated with Huainan coal mining activities has been monitoring by DInSAR (differential synthetic aperture radar) techniques in this study. Four ASAR (advanced SAR) pairs from 2009 to 2010 are selected to perform 2-pass DInSAR processing with spatial and temporal baselines suitable for subsidence monitoring. The subsidence maps generated from these pairs show that the extension of subsidence is consistent with the field observation. Quantitative measurements indicated that the magnitudes of subsidence are increased with the development of underground coal mining exploitation. This study demonstrates that DInSAR technique is effective for surface subsidence monitoring in coal mining area. Limitations and recommendations both in the adopted method and auxiliary data are also discussed.展开更多
In order to monitor the process of surface subsidence caused by mining in real time, we reported two types of fiber Bragg grating (FBG) based sensors. The principles of the FBG-based displacement sensor and the FBG-...In order to monitor the process of surface subsidence caused by mining in real time, we reported two types of fiber Bragg grating (FBG) based sensors. The principles of the FBG-based displacement sensor and the FBG-based micro-seismic sensor were described. The surface subsidence monitoring system based on the FBG sensing technology was designed. Some factual application of using these FBG-based sensors for subsidence monitoring in iron mines was presented.展开更多
A substantial number of the coal mines in China are in the geological condition of thick alluvium layer. Under these circumstances, it does not make sense to predict ground surface subsidence and other deformations by...A substantial number of the coal mines in China are in the geological condition of thick alluvium layer. Under these circumstances, it does not make sense to predict ground surface subsidence and other deformations by using conventional prediction models. This paper presents a novel ground surface subsidence prediction model for sub-critical mining in the geological condition of thick alluvium layer. The geological composition and mechanical properties of thick alluvium is regarded as a random medium, as are the uniformly distributed loads on rock mass; however, the overburden of the rock mass in the bending zone is looked upon as a hard stratum controlling the ground surface subsidence. The different subsidence and displacement mechanisms for the rock mass and the thick alluvium layer are respectively considered and described in this model, which indicates satisfactory performances in a practical prediction case.展开更多
To understand the mechanical response pattern of the existing structure and ground due to the construction of metro tunnels underneath,the finite difference method is adopted to study the torsional deformation and str...To understand the mechanical response pattern of the existing structure and ground due to the construction of metro tunnels underneath,the finite difference method is adopted to study the torsional deformation and stress variation of the existing structure and the effect of underground carriageway structures on the surface subsidence.The curves of the maximum differential subsidence,torsion angle,and distortion of the cross-section of the existing structure show two peaks in succession during traversing of two metro tunnels beneath it.The torsion angle of the existing structure changes when the two tunnels traverse beneath it in opposite directions.The first traversing of the shield tunnel mainly induces the magnitude variation in torsional deformation of the existing structure,but the second traversing of the subsurface tunnel may cause a dynamic change in the magnitude and form of torsional deformation in the existing structure.The shielding effect can reduce the surface subsidence caused by metro tunnel excavation to a certain extent,and the development trend of subsidence becomes slower as the excavation continues.展开更多
Coal mining-induced surface subsidence poses significant ecological and infrastructural challenges, necessitating a comprehensive study to ensure safe mining practices, particularly in underwater conditions. This proj...Coal mining-induced surface subsidence poses significant ecological and infrastructural challenges, necessitating a comprehensive study to ensure safe mining practices, particularly in underwater conditions. This project aims to address the extensive impact of coal mining on the environment, infrastructure, and overall safety, focusing on the Shigong River area above the working face. The study employs qualitative and quantitative analyses, along with on-site engineering measurements, to gather data on crucial parameters such as coal seam characteristics, roof rock lithology, thickness, water resistance, and structural damage degree. The research encompasses a multidisciplinary approach, involving mining, geology, hydrogeology, geophysical exploration, rock mechanics, mine surveying, and computational mathematics. The importance of effective safety measures and prevention techniques is emphasized, laying the foundation for research focused on the Xingyun coal mine. The brief concludes by highlighting the potential economic and social benefits of this project and its contribution to valuable experience for future subsea coal mining.展开更多
In recent years,field trials of non-pillar longwall mining using complete backfill have been implemented successively in the Chinese coal mining industry.The objective of this paper is to get a scientific understandin...In recent years,field trials of non-pillar longwall mining using complete backfill have been implemented successively in the Chinese coal mining industry.The objective of this paper is to get a scientific understanding of surface subsidence control effect using such techniques.It begins with a brief overview on complete backfill methods primarily used in China,followed by an analysis of collected subsidence factors under mining with complete backfill.It is concluded that non-pillar longwall panel layout cannot protect surface structures against damages at a relatively large mining height,even though complete backfill is conducted.In such cases,separated longwall panel layout should be applied,i.e.,panel width should be subcritical and stable coal pillars should be left between the adjacent panels.The proposed method takes the principles of subcritical extraction and partial extraction;in conjunction with gob backfilling,surface subsidence can be effectively mitigated,thus protecting surface buildings against mining-induced damage.A general design principle and method of separated panel layout have also been proposed.展开更多
The paper presents the results of terrain subsidence monitoring in Poland's Upper Silesian Coal Basin(USCB)mining area using Differential Interferometry Synthetic Aperture Radar(DInSAR)and Persistent Scatterer Int...The paper presents the results of terrain subsidence monitoring in Poland's Upper Silesian Coal Basin(USCB)mining area using Differential Interferometry Synthetic Aperture Radar(DInSAR)and Persistent Scatterer Interferometry(PSI).The study area accounts for almost three million inhabitants where mining which started in the 19th century,has produced severe damage to buildings and urban infrastructures in past years.The analysis aimed to combine eight different datasets,processed in two techniques,coming from various sensors and covering different periods.As a result,a map of areas that have been exposed to subsidence within 3045 square kilometers was obtained.The map covers a period of twenty years of intensive mining activities,i.e.1992-2012.A total of 81 interferograms were used in the study.The interferograms allowed not only to determine subsidence troughs(basins)formed from 1992 to 2012 but also to observe subsidence development over time.The work also included five sets of PSI processing,covering different temporal and spatial ranges,which were used to determine zones of residual subsidence.Based on InSAR datasets,an area of 521 square kilometers under the influence of mining activities were determined.Within the subsiding zones,an area of 312.5 square kilometers of the rapid increase in subsidence was identified on the interferograms.The study of combined different InSAR datasets provided large-area and long-term information on the impact of mining activities in the Upper Silesia Coal Basin.展开更多
To choose the optimum construction method of metro tunneling, we conducted research with numerical simulation on strata consolidation subsidence by dewatering, dynamic dewatering, and non-dewatering construction metho...To choose the optimum construction method of metro tunneling, we conducted research with numerical simulation on strata consolidation subsidence by dewatering, dynamic dewatering, and non-dewatering construction method, taking the integrated effects of fluid-solid coupling and tunneling mechanics into account. We obtained the curved surfaces of ground surface subsidence and strata consolidation subsidence. The results show that the quantity of ground surface subsidence is 31 mm for the non-dewatering method, 39 mm for the dynamic dewatering method, and 105 mm for the dewatering method. Their ratio is 1:1.3:3.4; and the percentages of strata consolidation subsidence to whole ground surface subsidence of each construction method is 27% (no-dewatering), 50% (dynamic dewatering), and 79% (dewatering). It is obvious that the non-dewatering construction method is the most effective method to control the strata consolidation subsidence induced by metro tunneling in saturated soft clay strata, and it has been successfully applied to the construction of the Shenzben metro line 1.展开更多
No.4326 super-wide panel of Wangzhuang Coal Mine ( in which the fully-mechanized top-coal caving longwall mining method was used) was monitored for dynamic characteristic of surface movement. The dynamic surface movem...No.4326 super-wide panel of Wangzhuang Coal Mine ( in which the fully-mechanized top-coal caving longwall mining method was used) was monitored for dynamic characteristic of surface movement. The dynamic surface movement in and after mining was predicted by using the Mining Subsidence Prediction System. The results indicate that after mining, the surface above the super-wide panel reaches a state of full subsidence, making the No.309 national highway above the panel be located on the flat bottom of the subsidence basin so that the influence of mining activity in both sides of 4326 panel on the national highway is the smallest.展开更多
文摘The results of experimentaI studies about the characteristics of broken rock expansion and reconsolidation were briefly introduced in this paper, and the surface subsidence coefficient under critical mining conditions was also analysed based on the principle of expansion and reconsolidation of the broken rock strata, a equation to calculate the corresponding surface subsidence was finally produced. This calculation method can be used to calculate more accurately the convergence quantity of consolidated rocks in the broken zone of the working face. In addition, case analyses by using the introduced calculation method were conducted and satisfactory results were obtained.
基金This paper is supported by Jinchuan Group Ltd.(No.2004-01D).
文摘The surface subsidence induced by mining is a complex problem, which is related with many complex and uncertain factors. Genetic programming (GP) has a good ability to deal with complex and nonlinear problems, therefore genetic programming approach is propesed to predict mining induced surface subsidence in this article. First genetic programming technique is introduced, second, surface subsidence genetic programming model is set up by selecting its main affective factors and training relating to practical engineering data, and finally, predictions are made by the testing of data, whose results show that the relative error is approximately less than 10%, which can meet the engineering needs, and therefore, this proposed approach is valid and applicable in predicting mining induced surface subsidence. The model offers a novel method to predict surface subsidence in mining.
基金Project(50274043) supported by the National Natural Science Foundation of China project (01JJY1004) supported bythe Natural Science Foundation of Hunan Province project (01A015) supported by the Natural Science Foundation of Hunan ProvincialEducation Committee
文摘There are many parameters influencing mining induced surface subsidence. These parameters usually interact with one another and some of them have the characteristic of fuzziness. Current approaches to predicting the subsidence cannot take into account of such interactions and fuzziness. In order to overcome this disadvantage, many mining induced surface subsidence cases were accumulated, and an artificial neuro fuzzy inference system(ANFIS) was used to set up 4 ANFIS models to predict the rise angle, dip angle, center angle and the maximum subsidence, respectively. The fitting and generalization prediction capabilities of the models were tested. The test results show that the models have very good fitting and generalization prediction capabilities and the approach can be applied to predict the mining induced surface subsidence.
基金supported by the National Natural Science Foundation of China(51504081,51704095,51374201)the National Key Research and Development Program of China(2017YFC0805202)+3 种基金the Scientific Research Key Project Fund of Education Department of Henan Province(18A440012,14A440001)the Research Fund of Henan Key Laboratory for Green and Efficient Mining and Comprehensive Utilization of Mineral Resources(S201619)the Research Fund of the State Key Laboratory of Coal Resources and Safe Mining(13KF02)the Ph.D.Programs Foundation of Henan Polytechnic University(B2014-50,B2016-67).
文摘The backfilling mining technology is a type of high-efficiency coal mining technology that is used to address the environmental issues caused by the caving mining technology.In this paper,the mechanical model of symmetrical laminated plate representing the overburden movement caused by the backfilling mining technology is established,and the governing differential equation of the motion of the overburden is derived.The boundary conditions of the mechanical model are put forward,and the analytical solution of the overburden movement and surface subsidence is obtained.The numerical model of the overburden movement and surface subsidence,under mining with backfilling,is established by means of the FLAC3D numerical software,which aims to systematically study the influence of backfilling compactness,mining thickness,and mining depth on the overburden movement and surface subsidence in backfilling mining.When the compactnessηis less than 70%,the overburden movement and surface subsidence is greater,while whenηis greater than 70%,the overburden movement and surface subsidence is reduced significantly.On this basis,the control mechanism of surface subsidence and overburden movement in backfilling mining is obtained.The suitable backfilling compactness is the key to controlling surface subsidence and overburden movement in backfilling mining.
基金supported by the Key Program of the National Natural Science Foundation of China (No. 50334060)
文摘The surface subsidence is a common environmental hazard in mined-out area. Based on careful analysis of the regularity of surface subsidence in mined-out area, we proposed a new time function based on Harris curve model in consideration of the shortage of current surface subsidence time functions. By analyzing the characteristics of the new time function, we found that it could meet the dynamic process, the velocity change process and the acceleration change process during surface subsidence. Then its rationality had been verified through project cases. The results show that the proposed time function model can give a good reflection of the regularity of surface subsidence in mined-out area and can accurately predict surface subsidence. And the prediction data of the model are a little greater than measured data on condition of proper measured data quantity, which is safety in the engineering. This model provides a new method for the analysis of surface subsidence in mined-out area and reference for future prediction, and it is valuable to engineering application.
文摘The developed process and theoretical achievement for the technology of controlling surface subsidence by grouting separated layer in overburden is summarized in this paper. The research progress of the technology is discussed synthetically on the basis of practice and research results obtained at coal mine of China in recent years. According to the development tendency of mining under buildings, water bodies and railroads and the properties of the technology, the future research direction is proposed.
基金Supported by the National Key Research and Development Program of China(No.2020YFA0714103).
文摘Monitoring and predicting of urban surface subsidence are important for urban disaster prevention and mitigation.In this paper,the Long Short-Term Memory(LSTM)network was used to predict the surface subsidence process of Changchun City from 2018 to 2020 based on PS-InSAR monitoring data.The results show that the prediction error of 57.89% of PS points in the LSTM network was less than 1mm with the average error of 1.8 mm and the standard deviation of 2.8 mm.The accuracy and reliability of the prediction were better than regression analysis,time series analysis and grey model.
文摘Subsidence occurred in many parts of the world. particularly in densely populated deltaic regions, causing extremely expensive damage. It can be resulted from natural causes. man-made induced causes, or other mixed causes. For identifying surface subsidence, many techniques have been employed, for example, geodetic monitoring, airborne laser subsidence measurement system,differential S.A.R., interferometry DGPS, and satellite radar measurements. However. all these methods require large time span and a large amount of field work. With the development of GIS techniques, identification of surface subsidence is becoming a relative easy problem. Ruqigou coal mining area was selected as a case study to identify the surface subsidence with DEM (digital elevation model) overlaying techniques. The result shows that DEM overlaying technique is a very useful method on surface subsidence identification. The accuracy of the results are largely dependent on the precision of the data-input.
文摘Under the condition of thick alluvia, there is biggish declination in predicting the coal mining subsidence by commonly strip design method compared with the practical observation, the sinkage is much smaller. Based on the method of the probability integral about coal mining subsidence calculation, discussed the surface subsidence calculation and deduced the formulas caused by the clay with dewatering. The results show that the clay dewatering has great impact on surface subsidence. Therefore, the clay dewatering on surface subsidence should not be overlooked.
文摘The GF-3 satellite was launched on August 10,2016 from the Taiyuan Satellite Launch Center and was put into operation at the end of January,2017.It has acquired nearly 100 thousand C-band multi-polarization ocean and land SAR images,providing data support for many departments covering resource survey,typhoon early warning,disaster assessment,crop yield estimation and polar investigation.Recently,the team led by ZHANG Qingjun from
基金supported by the National Key Technology R&D Program of China(No.2012BAC10B02)European Space Agency(No.9389)
文摘Coal is the primary energy resource in China. Thousands of underground coal mines are operating in China and cause severe land subsidence, leading to many environmental and engineering problems. Huainan (淮南) coal mine is the largest coal mining area in East China. Surface subsidence associated with Huainan coal mining activities has been monitoring by DInSAR (differential synthetic aperture radar) techniques in this study. Four ASAR (advanced SAR) pairs from 2009 to 2010 are selected to perform 2-pass DInSAR processing with spatial and temporal baselines suitable for subsidence monitoring. The subsidence maps generated from these pairs show that the extension of subsidence is consistent with the field observation. Quantitative measurements indicated that the magnitudes of subsidence are increased with the development of underground coal mining exploitation. This study demonstrates that DInSAR technique is effective for surface subsidence monitoring in coal mining area. Limitations and recommendations both in the adopted method and auxiliary data are also discussed.
文摘In order to monitor the process of surface subsidence caused by mining in real time, we reported two types of fiber Bragg grating (FBG) based sensors. The principles of the FBG-based displacement sensor and the FBG-based micro-seismic sensor were described. The surface subsidence monitoring system based on the FBG sensing technology was designed. Some factual application of using these FBG-based sensors for subsidence monitoring in iron mines was presented.
文摘A substantial number of the coal mines in China are in the geological condition of thick alluvium layer. Under these circumstances, it does not make sense to predict ground surface subsidence and other deformations by using conventional prediction models. This paper presents a novel ground surface subsidence prediction model for sub-critical mining in the geological condition of thick alluvium layer. The geological composition and mechanical properties of thick alluvium is regarded as a random medium, as are the uniformly distributed loads on rock mass; however, the overburden of the rock mass in the bending zone is looked upon as a hard stratum controlling the ground surface subsidence. The different subsidence and displacement mechanisms for the rock mass and the thick alluvium layer are respectively considered and described in this model, which indicates satisfactory performances in a practical prediction case.
基金National Natural Science Foundation of China,Grant/Award Numbers:51878060,52078046。
文摘To understand the mechanical response pattern of the existing structure and ground due to the construction of metro tunnels underneath,the finite difference method is adopted to study the torsional deformation and stress variation of the existing structure and the effect of underground carriageway structures on the surface subsidence.The curves of the maximum differential subsidence,torsion angle,and distortion of the cross-section of the existing structure show two peaks in succession during traversing of two metro tunnels beneath it.The torsion angle of the existing structure changes when the two tunnels traverse beneath it in opposite directions.The first traversing of the shield tunnel mainly induces the magnitude variation in torsional deformation of the existing structure,but the second traversing of the subsurface tunnel may cause a dynamic change in the magnitude and form of torsional deformation in the existing structure.The shielding effect can reduce the surface subsidence caused by metro tunnel excavation to a certain extent,and the development trend of subsidence becomes slower as the excavation continues.
文摘Coal mining-induced surface subsidence poses significant ecological and infrastructural challenges, necessitating a comprehensive study to ensure safe mining practices, particularly in underwater conditions. This project aims to address the extensive impact of coal mining on the environment, infrastructure, and overall safety, focusing on the Shigong River area above the working face. The study employs qualitative and quantitative analyses, along with on-site engineering measurements, to gather data on crucial parameters such as coal seam characteristics, roof rock lithology, thickness, water resistance, and structural damage degree. The research encompasses a multidisciplinary approach, involving mining, geology, hydrogeology, geophysical exploration, rock mechanics, mine surveying, and computational mathematics. The importance of effective safety measures and prevention techniques is emphasized, laying the foundation for research focused on the Xingyun coal mine. The brief concludes by highlighting the potential economic and social benefits of this project and its contribution to valuable experience for future subsea coal mining.
文摘In recent years,field trials of non-pillar longwall mining using complete backfill have been implemented successively in the Chinese coal mining industry.The objective of this paper is to get a scientific understanding of surface subsidence control effect using such techniques.It begins with a brief overview on complete backfill methods primarily used in China,followed by an analysis of collected subsidence factors under mining with complete backfill.It is concluded that non-pillar longwall panel layout cannot protect surface structures against damages at a relatively large mining height,even though complete backfill is conducted.In such cases,separated longwall panel layout should be applied,i.e.,panel width should be subcritical and stable coal pillars should be left between the adjacent panels.The proposed method takes the principles of subcritical extraction and partial extraction;in conjunction with gob backfilling,surface subsidence can be effectively mitigated,thus protecting surface buildings against mining-induced damage.A general design principle and method of separated panel layout have also been proposed.
文摘The paper presents the results of terrain subsidence monitoring in Poland's Upper Silesian Coal Basin(USCB)mining area using Differential Interferometry Synthetic Aperture Radar(DInSAR)and Persistent Scatterer Interferometry(PSI).The study area accounts for almost three million inhabitants where mining which started in the 19th century,has produced severe damage to buildings and urban infrastructures in past years.The analysis aimed to combine eight different datasets,processed in two techniques,coming from various sensors and covering different periods.As a result,a map of areas that have been exposed to subsidence within 3045 square kilometers was obtained.The map covers a period of twenty years of intensive mining activities,i.e.1992-2012.A total of 81 interferograms were used in the study.The interferograms allowed not only to determine subsidence troughs(basins)formed from 1992 to 2012 but also to observe subsidence development over time.The work also included five sets of PSI processing,covering different temporal and spatial ranges,which were used to determine zones of residual subsidence.Based on InSAR datasets,an area of 521 square kilometers under the influence of mining activities were determined.Within the subsiding zones,an area of 312.5 square kilometers of the rapid increase in subsidence was identified on the interferograms.The study of combined different InSAR datasets provided large-area and long-term information on the impact of mining activities in the Upper Silesia Coal Basin.
文摘To choose the optimum construction method of metro tunneling, we conducted research with numerical simulation on strata consolidation subsidence by dewatering, dynamic dewatering, and non-dewatering construction method, taking the integrated effects of fluid-solid coupling and tunneling mechanics into account. We obtained the curved surfaces of ground surface subsidence and strata consolidation subsidence. The results show that the quantity of ground surface subsidence is 31 mm for the non-dewatering method, 39 mm for the dynamic dewatering method, and 105 mm for the dewatering method. Their ratio is 1:1.3:3.4; and the percentages of strata consolidation subsidence to whole ground surface subsidence of each construction method is 27% (no-dewatering), 50% (dynamic dewatering), and 79% (dewatering). It is obvious that the non-dewatering construction method is the most effective method to control the strata consolidation subsidence induced by metro tunneling in saturated soft clay strata, and it has been successfully applied to the construction of the Shenzben metro line 1.
文摘No.4326 super-wide panel of Wangzhuang Coal Mine ( in which the fully-mechanized top-coal caving longwall mining method was used) was monitored for dynamic characteristic of surface movement. The dynamic surface movement in and after mining was predicted by using the Mining Subsidence Prediction System. The results indicate that after mining, the surface above the super-wide panel reaches a state of full subsidence, making the No.309 national highway above the panel be located on the flat bottom of the subsidence basin so that the influence of mining activity in both sides of 4326 panel on the national highway is the smallest.