Single crystal silicon freestanding structures for tensile and fatigue testing were treated with KrF excimer laser to improve surface roughness and accordingly mechanical performance. Sample thickness was 5 μm. Local...Single crystal silicon freestanding structures for tensile and fatigue testing were treated with KrF excimer laser to improve surface roughness and accordingly mechanical performance. Sample thickness was 5 μm. Localized laser treatment was successful in eliminating the scallops developed during Bosch process and in reducing surface roughness. Harsh irradiation at laser energies up to 4 J/cm2 was only possible due to localized treatment without significant vibrations occurring on the freestanding samples that led to fracture in preliminary experiments at energies as low as 0.16 J/cm2. Finite element analysis was used to investigate the temperature distribution on the irradiated structures. Atomic force microscopy (AFM) and Raman spectroscopy were also used to assess surface roughness, crystallinity changes and surface stresses developing on surfaces subjected to perpendicular laser irradiation. At a high energy (3.2 J/cm2) the top surface showed a decrease of roughness compared to fabricated samples. Raman spectroscopy showed the dominance of crystalline silicon after laser irradiation. The effects of laser energy, number of展开更多
Manure management is an essential component of dairy production. Nutrient-laden, field-applied dairy manure often serves as a fertilizer source, but can also pose environmental threats if not properly managed. The Haa...Manure management is an essential component of dairy production. Nutrient-laden, field-applied dairy manure often serves as a fertilizer source, but can also pose environmental threats if not properly managed. The Haak dairy farm, located in Decatur, Arkansas, was granted a permit by the Arkansas Department of Environmental Quality (ADEQ) to employ a unique method in treating and storing cattle manure generated during the milking process. This method includes minimizing water use in wash water, dry scraping solids to combine with sawdust for composting and pumping effluent underground into a sloped concrete basin that serves as secondary solid separator before transporting the manure effluent into an interception trench and an adjacent grassed field to facilitate manure nutrient uptake and retention. The Arkansas Discovery Farm program (ADF) is conducting research to evaluate the environmental performance of the dairy’s milk center wash water treatment system (MCWW) by statistical analysis, characterization of phosphorus (P) migration in soil downslope from the inception trench, temperature measurements, and nutrient analysis of a stored dry stack manure/sawdust mixture. Goals included determining possible composting effectiveness along with comparisons to untreated dairy manure and quantifying the use of on-farm water. Results from this research demonstrated that: 1) The MCWW was effective at retaining manure-derived nutrients and reducing field nutrient migration as the MCWW interception trench had significantly higher total nitrogen (TN) (804.2 to 4.1), total phosphorus (TP) (135.6 to 1.5), and water extractable phosphorus (WEP) (55.0 to 1.0) concentrations in milligrams per liter (mg⋅L<sup>-1</sup>) than the downhill freshwater pond respectively;2) temperature readings of the manure dry stack indicated heightened levels of microbial and thermal activity, but did not reach a standard composting temperature of 54°C;3) manure dry stack nutrient content was typically higher than untreated dairy manure when measured on a “dry basis” in ppm, but was lower on an “as is basis” in ppm and kg/metric ton;and 4) water meter readings showed that the greatest use of on-farm water was for farm-wide cattle drinking (18.77), followed by water used in the milking center (3.45) and then followed by human usage (0.02) measured in cubic meters per day (m<sup>3</sup>⋅d<sup>-1</sup>). These results demonstrate that practical innovations in agricultural engineering and environmental science, such as the Haak dairy’s manure treatment system, can effectively reduce environmental hazards that accompany the management of manure at this dairy operation.展开更多
This paper describes the electroless Ni or Cu plating of some fiuoropolymer substrates through a tin-free activation process. Materials subjected to surface metallization are commercial Teflon() FEP, Nafion(), ACLAR()...This paper describes the electroless Ni or Cu plating of some fiuoropolymer substrates through a tin-free activation process. Materials subjected to surface metallization are commercial Teflon() FEP, Nafion(), ACLAR() and LaRCTM-CP1 thin films which have recently gained a large scientific and technological interest due to their excellent thermal, chemical, mechanical and dielectric properties. The original approach implemented in the present work involves: (i)the grafting of nitrogen-containing functionalities on the polymer surfaces through plasma treatments in ammonia, (ii) the direct catalysis of the so-modified surfaces via their immersion in a simple acidic PdCl2 solution (i.e. without using a prior surface sensitization in an acidic SnCl2 solution), and finally (iii) the electroless metallization itself. However, prior to the immersion in the industrial plating baths, the chemical reduction of the Pd+2 species (species covalently tethered on the nitrogen-containing groups) to metallic palladium (PdO) is shown to be a key factor in catalyzing the electroless deposition initiation. This is made by immersion in an hypophosphite (H2PO2-) solution. Wettability measurements and X-ray photoelectron spectroscopy (XPS) experiments are used to characterize every surface modification step of the developed process. A cross-hatch tape test was used to asses the adhesion strength of the electroless films that is shown qualitatively good. In addition, a fragmentation test was developed in combination with electrical measurements. Its use allows to distinguish different adhesion levels at the metal/polymer interface and to evidence the influence of some processing parameters.展开更多
Natural fiber-reinforced hybrid composites can be a better replacement for plastic composites since these plastic composites pose a serious threat to the environment.The aim of this study is to analyze the effect of s...Natural fiber-reinforced hybrid composites can be a better replacement for plastic composites since these plastic composites pose a serious threat to the environment.The aim of this study is to analyze the effect of surface modification of the natural fibers on the mechanical,thermal,hygrothermal,and water absorption behaviors of flax,sisal,and glass fiber-reinforced epoxy hybrid composites.The mechanical properties of alkaline treated sisal and flax fibers were found to increase considerably.Tensile,flexural and impact strength of glass/flax-fiber-reinforced hybrid samples improved by 58%,36%,and 51%,respectively,after surface alkaline treatment.In addition,the hygrothermal analysis and water absorption capacity are studied and also the Interfacial bonding properties were analyzed using Scanning Electron Microscopic images.The thermal analysis using thermogravimetric analyzer reveals that the decomposition temperature for hybrid fiber reinforced composites are between 306 and 312℃.In conclusion,surface treatment improves the performance of natural fiber in hybrid fiber-reinforced composites,particularly flax fiber.展开更多
Submerged abrasive waterjet peening(SAWJP)is an effective anti-fatigue manufacturing technology that is widely used to strengthen aeroengine components.This study investigated the correlation of SAWJP process paramete...Submerged abrasive waterjet peening(SAWJP)is an effective anti-fatigue manufacturing technology that is widely used to strengthen aeroengine components.This study investigated the correlation of SAWJP process parameters on surface integrity and fatigue life of titanium alloy TA19.SAWJP with different water pressures and standoff distances(SoDs)was conducted on the TA19 specimens.The surface integrity of the specimens before and after SAWJP with different process parameters was experimentally studied,including microstructure,surface roughness,microhardness,and compressive residual stress(CRS).Finally,fatigue tests of the specimens before and after SAWJP treatment with different process parameters were carried out at room temperature.The results highlighted that the fatigue life of the TA19 specimen can be increased by 5.46,5.98,and 6.28 times under relatively optimal process parameters,which is mainly due to the improved surface integrity of the specimen after SAWJP treatment.However,the fatigue life of specimens treated with improper process parameters is decreased by 0.55 to 0.69 times owing to the terrible surface roughness caused by the material erosion.This work verifies that SAWJP can effectively improve the surface integrity and fatigue life of workpieces,and reveals the relationship between process parameters,surface integrity,and fatigue life,which provides support for the promotion of SAWJP in the manufacturing fields.展开更多
文摘Single crystal silicon freestanding structures for tensile and fatigue testing were treated with KrF excimer laser to improve surface roughness and accordingly mechanical performance. Sample thickness was 5 μm. Localized laser treatment was successful in eliminating the scallops developed during Bosch process and in reducing surface roughness. Harsh irradiation at laser energies up to 4 J/cm2 was only possible due to localized treatment without significant vibrations occurring on the freestanding samples that led to fracture in preliminary experiments at energies as low as 0.16 J/cm2. Finite element analysis was used to investigate the temperature distribution on the irradiated structures. Atomic force microscopy (AFM) and Raman spectroscopy were also used to assess surface roughness, crystallinity changes and surface stresses developing on surfaces subjected to perpendicular laser irradiation. At a high energy (3.2 J/cm2) the top surface showed a decrease of roughness compared to fabricated samples. Raman spectroscopy showed the dominance of crystalline silicon after laser irradiation. The effects of laser energy, number of
文摘Manure management is an essential component of dairy production. Nutrient-laden, field-applied dairy manure often serves as a fertilizer source, but can also pose environmental threats if not properly managed. The Haak dairy farm, located in Decatur, Arkansas, was granted a permit by the Arkansas Department of Environmental Quality (ADEQ) to employ a unique method in treating and storing cattle manure generated during the milking process. This method includes minimizing water use in wash water, dry scraping solids to combine with sawdust for composting and pumping effluent underground into a sloped concrete basin that serves as secondary solid separator before transporting the manure effluent into an interception trench and an adjacent grassed field to facilitate manure nutrient uptake and retention. The Arkansas Discovery Farm program (ADF) is conducting research to evaluate the environmental performance of the dairy’s milk center wash water treatment system (MCWW) by statistical analysis, characterization of phosphorus (P) migration in soil downslope from the inception trench, temperature measurements, and nutrient analysis of a stored dry stack manure/sawdust mixture. Goals included determining possible composting effectiveness along with comparisons to untreated dairy manure and quantifying the use of on-farm water. Results from this research demonstrated that: 1) The MCWW was effective at retaining manure-derived nutrients and reducing field nutrient migration as the MCWW interception trench had significantly higher total nitrogen (TN) (804.2 to 4.1), total phosphorus (TP) (135.6 to 1.5), and water extractable phosphorus (WEP) (55.0 to 1.0) concentrations in milligrams per liter (mg⋅L<sup>-1</sup>) than the downhill freshwater pond respectively;2) temperature readings of the manure dry stack indicated heightened levels of microbial and thermal activity, but did not reach a standard composting temperature of 54°C;3) manure dry stack nutrient content was typically higher than untreated dairy manure when measured on a “dry basis” in ppm, but was lower on an “as is basis” in ppm and kg/metric ton;and 4) water meter readings showed that the greatest use of on-farm water was for farm-wide cattle drinking (18.77), followed by water used in the milking center (3.45) and then followed by human usage (0.02) measured in cubic meters per day (m<sup>3</sup>⋅d<sup>-1</sup>). These results demonstrate that practical innovations in agricultural engineering and environmental science, such as the Haak dairy’s manure treatment system, can effectively reduce environmental hazards that accompany the management of manure at this dairy operation.
文摘This paper describes the electroless Ni or Cu plating of some fiuoropolymer substrates through a tin-free activation process. Materials subjected to surface metallization are commercial Teflon() FEP, Nafion(), ACLAR() and LaRCTM-CP1 thin films which have recently gained a large scientific and technological interest due to their excellent thermal, chemical, mechanical and dielectric properties. The original approach implemented in the present work involves: (i)the grafting of nitrogen-containing functionalities on the polymer surfaces through plasma treatments in ammonia, (ii) the direct catalysis of the so-modified surfaces via their immersion in a simple acidic PdCl2 solution (i.e. without using a prior surface sensitization in an acidic SnCl2 solution), and finally (iii) the electroless metallization itself. However, prior to the immersion in the industrial plating baths, the chemical reduction of the Pd+2 species (species covalently tethered on the nitrogen-containing groups) to metallic palladium (PdO) is shown to be a key factor in catalyzing the electroless deposition initiation. This is made by immersion in an hypophosphite (H2PO2-) solution. Wettability measurements and X-ray photoelectron spectroscopy (XPS) experiments are used to characterize every surface modification step of the developed process. A cross-hatch tape test was used to asses the adhesion strength of the electroless films that is shown qualitatively good. In addition, a fragmentation test was developed in combination with electrical measurements. Its use allows to distinguish different adhesion levels at the metal/polymer interface and to evidence the influence of some processing parameters.
文摘Natural fiber-reinforced hybrid composites can be a better replacement for plastic composites since these plastic composites pose a serious threat to the environment.The aim of this study is to analyze the effect of surface modification of the natural fibers on the mechanical,thermal,hygrothermal,and water absorption behaviors of flax,sisal,and glass fiber-reinforced epoxy hybrid composites.The mechanical properties of alkaline treated sisal and flax fibers were found to increase considerably.Tensile,flexural and impact strength of glass/flax-fiber-reinforced hybrid samples improved by 58%,36%,and 51%,respectively,after surface alkaline treatment.In addition,the hygrothermal analysis and water absorption capacity are studied and also the Interfacial bonding properties were analyzed using Scanning Electron Microscopic images.The thermal analysis using thermogravimetric analyzer reveals that the decomposition temperature for hybrid fiber reinforced composites are between 306 and 312℃.In conclusion,surface treatment improves the performance of natural fiber in hybrid fiber-reinforced composites,particularly flax fiber.
基金supported financially by the National Natural Science Foundation of China(Nos.52275148 and U21B2077)Natural Science Foundation of Shanghai(20ZR1415300)+1 种基金Innovation Program of Shanghai Municipal Education Commission(2019-01-07-00-02-E00068)Innovation Program Phase II of AECC Commercial Aircraft Engine Co.Ltd.(Grant No.HT-3RJC1053-2020)。
文摘Submerged abrasive waterjet peening(SAWJP)is an effective anti-fatigue manufacturing technology that is widely used to strengthen aeroengine components.This study investigated the correlation of SAWJP process parameters on surface integrity and fatigue life of titanium alloy TA19.SAWJP with different water pressures and standoff distances(SoDs)was conducted on the TA19 specimens.The surface integrity of the specimens before and after SAWJP with different process parameters was experimentally studied,including microstructure,surface roughness,microhardness,and compressive residual stress(CRS).Finally,fatigue tests of the specimens before and after SAWJP treatment with different process parameters were carried out at room temperature.The results highlighted that the fatigue life of the TA19 specimen can be increased by 5.46,5.98,and 6.28 times under relatively optimal process parameters,which is mainly due to the improved surface integrity of the specimen after SAWJP treatment.However,the fatigue life of specimens treated with improper process parameters is decreased by 0.55 to 0.69 times owing to the terrible surface roughness caused by the material erosion.This work verifies that SAWJP can effectively improve the surface integrity and fatigue life of workpieces,and reveals the relationship between process parameters,surface integrity,and fatigue life,which provides support for the promotion of SAWJP in the manufacturing fields.