期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
CAVITATION NUCLEI:EXPERIMENTS AND THEORY 被引量:6
1
作者 MφRCH K.A. 《Journal of Hydrodynamics》 SCIE EI CSCD 2009年第2期176-189,共14页
The Swedish astrophysicist and Nobel Prize winner Hannes Alfven said: Theories come and go -- the experiment is here forever. Often a theory, which we set up to describe an observed physical phenomenon, suffers from ... The Swedish astrophysicist and Nobel Prize winner Hannes Alfven said: Theories come and go -- the experiment is here forever. Often a theory, which we set up to describe an observed physical phenomenon, suffers from the lack of knowledge of decisive parameters, and therefore at best the theory becomes insufficient. Contrary, the experiment always reveals nature itself, though at prevailing experimental conditions. With essential parameters being out of control and even maybe unidentified, apparently similar experiments may deviate way beyond our expectations. However, these discrepancies offer us a chance to reflect on the character of the unknown parameters. In this way non-concordant experimental results may hold the key to the development of better theories - and to new experiments for the testing of their validity. Cavitation and cavitation nuclei are phenomena of that character. 展开更多
关键词 cavitation nuclei gas bubbles surface nano voids scanning tunneling microscopy atomic force microscopy
原文传递
Influence of heating parameters on properties of the Al-Si coating applied to hot stamping 被引量:8
2
作者 LIANG WeiKang TAO WenJie +1 位作者 ZHU Bin ZHANG YiSheng 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第7期1088-1102,共15页
The Al-Si coating of ultra-high strength steel has been applied to hot stamping more and more widely, owing to solving the problem of oxidation and decarburization. However, the evolution of Al-Si coating during the h... The Al-Si coating of ultra-high strength steel has been applied to hot stamping more and more widely, owing to solving the problem of oxidation and decarburization. However, the evolution of Al-Si coating during the heating process was rarely studied in the previous study. The tests about the influence of heating parameters, such as heating temperature, heating rates and dwell time, on properties of the Al-Si coating were carried out on the Gleeble-3500 thermal simulator. The properties of the Al-Si coating, for instance, volume fraction of FeAl intermetallics, α-Fe layer as well as porosity and 3D surface topography, were explored in the study. Results showed that more and more Kirkendall voids and cracks appeared in the Al-Si coating when the heating temperature exceeded 600°C. The heating rates almost had no influence on properties of the Al-Si coating when the temperature was equal to or lower than 500°C. The volume fraction of FeAl intermetallics in the coating with dwell time from 3 s to 8 min at 930°C was0, 6.19%, 17.03% and 20.65%, separately. The volume fraction of the α-Fe layer in the coating changed from zero to 31.52%with the prolonged dwell time. The porosity of the coating ranged from 0.51% to 4.98% with the extension of dwell time. The unsmooth degree of the surface of the coating rose gradually with the increasing of heating rates and the extension of dwell time.The 3D surface topography of the coating was determined by the comprehensive effect of atoms diffusion, new formed phases,surface tension and the degree of oxidation of the coating surface. Experiments indicated that rapid heating was not suitable for the coating when the temperature exceeded 500°C. Experiments also demonstrated that enough dwell time was essential to obtain the superior properties of the coating. 展开更多
关键词 Al-Si coating heating parameters thermal simulator Kirkendall voids cracks 3D surface topography
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部