As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal...As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.展开更多
To investigate the optical properties of the ternary nanostructures, the nanodisk, core–shell, and three-sphere structures are constructed. The extinction coefficients and electric near-field distributions of these s...To investigate the optical properties of the ternary nanostructures, the nanodisk, core–shell, and three-sphere structures are constructed. The extinction coefficients and electric near-field distributions of these structures are calculated by the discrete dipole approximation(DDA) method. The result shows that the nanodisk structure has the best extinction efficiency in the three structures. Furthermore, several three-material combinations of the nanodisk structures are investigated. The ternary nanodisk structure composed of TiO_(2) and two noble metals(Au, Ag or Pt) has higher extinction coefficient and near-field intensity than the nanodisk consisting of Au, TiO_(2) and a semiconductor(Pb Se, Ge, MoS2, CdSe, CdS or TiO_(2)).Especially, TiO_(2)/Ag/Pt has the best extinction efficiency and the max electric near-field intensity. And the extinction spectra of TiO_(2)/Ag/Pt and TiO_(2)/Ag/Au structures are complementary in the visible range. This work conduces to the further research into ternary nanostructure and provides essential information about its performance in visible range.展开更多
First-principle calculations were performed to study the adsorption of boron and its relationship with the morphologies of Ti C.It is found that although the adsorption of boron on all the low-index Ti C crystal plane...First-principle calculations were performed to study the adsorption of boron and its relationship with the morphologies of Ti C.It is found that although the adsorption of boron on all the low-index Ti C crystal planes is thermally favorable,it will be adsorbed more easily by C-terminated {111} and {011} planes,while less possible to be adsorbed by {001}.The study of the formation of B–B clusters indicates that the distribution of boron adatoms on C-terminated(111) and {011} planes will be more uniform,and the diffusion of the adatom further confirms the above results.According to the geometry relationship and growth rate of different crystal planes,it is deduced that the adsorption of boron on Ti C will seriously impede the growth of {111} and {011} planes,which can make Ti C grow into hexagonal platelets.展开更多
基金financially supported by the National Key R&D Program of China(No.2022YFE0121300)the National Natural Science Foundation of China(No.52374376)the Introduction Plan for High-end Foreign Experts(No.G2023105001L)。
文摘As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11774248 and 11974253)。
文摘To investigate the optical properties of the ternary nanostructures, the nanodisk, core–shell, and three-sphere structures are constructed. The extinction coefficients and electric near-field distributions of these structures are calculated by the discrete dipole approximation(DDA) method. The result shows that the nanodisk structure has the best extinction efficiency in the three structures. Furthermore, several three-material combinations of the nanodisk structures are investigated. The ternary nanodisk structure composed of TiO_(2) and two noble metals(Au, Ag or Pt) has higher extinction coefficient and near-field intensity than the nanodisk consisting of Au, TiO_(2) and a semiconductor(Pb Se, Ge, MoS2, CdSe, CdS or TiO_(2)).Especially, TiO_(2)/Ag/Pt has the best extinction efficiency and the max electric near-field intensity. And the extinction spectra of TiO_(2)/Ag/Pt and TiO_(2)/Ag/Au structures are complementary in the visible range. This work conduces to the further research into ternary nanostructure and provides essential information about its performance in visible range.
基金financially supported by the National Natural Science Foundation of China (No.51301068)the Natural Science Foundation of Hebei Province (No.E2014502003 and A2013502120)the Fundamental Research Funds for the Central Universities (No.2014MS116)
文摘First-principle calculations were performed to study the adsorption of boron and its relationship with the morphologies of Ti C.It is found that although the adsorption of boron on all the low-index Ti C crystal planes is thermally favorable,it will be adsorbed more easily by C-terminated {111} and {011} planes,while less possible to be adsorbed by {001}.The study of the formation of B–B clusters indicates that the distribution of boron adatoms on C-terminated(111) and {011} planes will be more uniform,and the diffusion of the adatom further confirms the above results.According to the geometry relationship and growth rate of different crystal planes,it is deduced that the adsorption of boron on Ti C will seriously impede the growth of {111} and {011} planes,which can make Ti C grow into hexagonal platelets.