期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
A Novel Twist Deformation Model of Soft Tissue in Surgery Simulation
1
作者 Xiaorui Zhang Pengpai Wang +1 位作者 Wei Sun Norman I.Badler 《Computers, Materials & Continua》 SCIE EI 2018年第5期297-319,共23页
Real-time performance and accuracy are two most challenging requirements in virtual surgery training.These difficulties limit the promotion of advanced models in virtual surgery,including many geometric and physical m... Real-time performance and accuracy are two most challenging requirements in virtual surgery training.These difficulties limit the promotion of advanced models in virtual surgery,including many geometric and physical models.This paper proposes a physical model of virtual soft tissue,which is a twist model based on the Kriging interpolation and membrane analogy.The proposed model can quickly locate spatial position through Kriging interpolation method and accurately compute the force change on the soft tissue through membrane analogy method.The virtual surgery simulation system is built with a PHANTOM OMNI haptic interaction device to simulate the torsion of virtual stomach and arm,and further verifies the real-time performance and simulation accuracy of the proposed model.The experimental results show that the proposed soft tissue model has high speed and accuracy,realistic deformation,and reliable haptic feedback. 展开更多
关键词 Kriging interpolation method membrane analogy twist deformation virtual soft tissue surgery simulation
下载PDF
Computer-Aided Simulation of Mastoidectomy
2
作者 CHEN He-xin, MA Zhi-chao, Wang Zhang-feng, GUO Jie-bo, WEN Wei-ping, XU Geng Otorhinolaryngology Hospital of the First Affiliated Hospital of Sun Yat-sen University. Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China 《Journal of Otology》 2008年第2期113-115,共3页
Objective To establish a three-dimensional model of the temporal bone using CT scan images for study of temporal bone structures and simulation of mastoidectomy procedures. Methods CT scan images from 6 individuals (1... Objective To establish a three-dimensional model of the temporal bone using CT scan images for study of temporal bone structures and simulation of mastoidectomy procedures. Methods CT scan images from 6 individuals (12 temporal bones) were used to reconstruct the Fallopian canal, internal auditory canal, cochlea, semicircular canals, sigmoid sinus, posterior fossa floor and jugular bulb on a computer platform. Their anatomical relations within the temporal bone were restored in the computed model. The same model was used to simulate mastoidectomy procedures. Results The reconstructed computer model provided accurate and clear three-dimensional images of temporal bone structures. Simulation of mastoidectomy using these images provided procedural experiences closely mimicking the real surgical procedure. Conclusion Computer-aided three dimensional reconstruction of temporal bone structures using CT scan images is a useful tool in surgical simulation and can aid surgical procedure planning. 展开更多
关键词 three-dimension reconstruction CT scan surgery simulation
下载PDF
Application of a medical image processing system in liver transplantation 被引量:19
3
作者 Fang, Chi-Hua Li, Xiao-Feng +4 位作者 Li, Zhou Fan, Ying-Fang Lu, Chao-Min Huang, Yan-Peng Peng, Feng-Ping 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS 2010年第4期370-375,共6页
BACKGROUND: At present, imaging is used not only to show the form of images, but also to make three-dimensional (3D) reconstructions and visual simulations based on original data to guide clinical surgery. This study ... BACKGROUND: At present, imaging is used not only to show the form of images, but also to make three-dimensional (3D) reconstructions and visual simulations based on original data to guide clinical surgery. This study aimed to assess the use of a medical image-processing system in liver transplantation surgery. METHODS: The data of abdominal 64-slice spiral CT scan were collected from 200 healthy volunteers and 37 liver cancer patients in terms of hepatic arterial phase, portal phase, and hepatic venous phase. A 3D model of abdominal blood vessels including the abdominal aorta system, portal vein system, and inferior vena cava system was reconstructed by an abdominal image processing system to identify vascular variations. Then, a 3D model of the liver was reconstructed in terms of hepatic segmentation and liver volume was calculated. The Free Form modeling system with a PHANTOM force feedback device was used to simulate the real liver transplantation environment, in which the total process of liver transplantation was completed. RESULTS: The reconstructed model of the abdominal blood vessels and the liver was clearly demonstrated to be three-dimensionally consistent with the anatomy of the liver, in which the variations of abdominal blood vessels were identified and liver segmentation was performed digitally. In the model, liver transplantation was simulated subsequently, and different modus operandi were selected successfully. CONCLUSION: The digitized medical image processing system may be valuable for liver transplantation. 展开更多
关键词 computed tomography digital reconstruction simulation surgery liver transplantation
下载PDF
A virtual reality based surgical skills training simulator for catheter ablation with real-time and robust interaction 被引量:1
4
作者 Haoyu WANG Jianhuang WU 《Virtual Reality & Intelligent Hardware》 2021年第4期302-314,共13页
Background Atrial fibrillation(AF)is the most common sustained cardiac arrhythmia that can cause severe heart problems.Catheter ablation is one of the most ideal procedures for the treatment of AF.Physicians qualified... Background Atrial fibrillation(AF)is the most common sustained cardiac arrhythmia that can cause severe heart problems.Catheter ablation is one of the most ideal procedures for the treatment of AF.Physicians qualified to perform this procedure need to be highly skilled in manipulating the relevant surgical devices.This study proposes an interactive surgical simulator with high fidelity to facilitate efficient training and low-cost medical education.Methods We used a shared centerline model to simulate the interaction between multiple surgical devices.An improved adaptive deviation-feedback approach is proposed to accelerate the convergence of each iteration.The periodical beating of the human heart was also simulated in real time using the position-based dynamics(PBD)framework to achieve higher fidelity.We then present a novel method for handling the interaction between the devices and the beating heart mesh model.Experiments were conducted in a homemade simulator prototype to evaluate the robustness,performance,and flexibility of the proposed method.Preliminary evaluation of the simulator was performed by medical students,residents,and surgeons.Results The interaction between surgical devices,static vascular meshes,and beating heart mesh was stably simulated in a frame rate suitable for interaction.Conclusion Our simulator is capable of simulating the procedure of catheter ablation with high fidelity and provides immersive visual experiences and haptic feedback. 展开更多
关键词 Virtual reality Interventional radiology Surgical skills training surgery simulator Catheter ablation
下载PDF
Digital medical technology based on 64-slice computed tomography in hepatic surgery 被引量:29
5
作者 FANG Chi-hua HUANG Yan-peng +3 位作者 CHEN Mian-ling LU Chao-min LI Xiao-feng QIU Wen-feng 《Chinese Medical Journal》 SCIE CAS CSCD 2010年第9期1149-1153,共5页
Background With the rapid development of computer technology, digital medicine has become a new direction in surgery. The application of digital medicine in hepatic surgery is still at the early stage and less reporte... Background With the rapid development of computer technology, digital medicine has become a new direction in surgery. The application of digital medicine in hepatic surgery is still at the early stage and less reported in the literature. The aim of this study was to apply digital medical technology in the context of hepatic surgery. Methods Data from 64-slice helical computed tomography of 17 patients, including 13 with hepatocellular carcinoma and 4 with hepatic hemangioma, were imported into independently developed medical image software program, segmentation and three-dimensional reconstruction were performed. The three-dimensional models were then processed with the FreeForm Modeling System. We used virtual surgical instruments to perform surgery on the models. Simulated surgeries included six hepatic segmentectomies, four left hemihepatectomies, three right hemihepatectomies for hepatocellular carcinoma, one hepatic segmentectomy, two stripping surgeries, and one irregular segmentectomy combined with stripping surgery for hemangioma. For resections involving more than three hepatic segments, total and residual functional hepatic volumes were measured before and after simulation surgery, and the resection ratio was calculated.Results The anatomy of the models was distinct and was used to localize lesions. We used virtual surgical instruments to perform simulated surgeries and used the models to optimize actual surgeries. We were able to minimize resection volume as well as surgical risk.Conclusions Digital medical technology is helpful in the diagnosis of hepatic disease and in optimizing surgical plans. Three-dimensional models can decrease surgical risk and help prevent postoperative hepatic failure. 展开更多
关键词 digital medical technology liver failure LIVER simulation surgery three-dimensional reconstruction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部