A disease transmission model of SI type with stage structure is formulated. The stability of disease free equilibrium, the existence and uniqueness of an endemic equilibrium, the existence of a global attractor are in...A disease transmission model of SI type with stage structure is formulated. The stability of disease free equilibrium, the existence and uniqueness of an endemic equilibrium, the existence of a global attractor are investigated.展开更多
Epidemiologic model of SIS type has a delay corresponding to the infectious period and disease related deaths,so that the population size is variable.The population dynamics structure is recruitment and natural birth...Epidemiologic model of SIS type has a delay corresponding to the infectious period and disease related deaths,so that the population size is variable.The population dynamics structure is recruitment and natural births with natural deaths.The incidence term is of the standard incidence.Here the thresholds and equilibria are detemined,and stabilities are examined.The persistence of the infectious disease and disease related deaths can lead to a new equilibrium population size below the carrying capacity.展开更多
A simple SI epidemic model with age of vaccination is discussed in this paper.Both vexing birth rate, the mortality rate caused by disease and vaccine waning rate areconsidered in this model. We prove that the global ...A simple SI epidemic model with age of vaccination is discussed in this paper.Both vexing birth rate, the mortality rate caused by disease and vaccine waning rate areconsidered in this model. We prove that the global dynamics is completely determined bythe basic reproductive number R(ψ)(ψ denotes per capita vaccination rate). If R(0) 〈 1,the disease-free equilibrium is a global attractor; If R(ψ) 〈: 1, the disease-free equilibriumis locally asymptotically stable; If R(ψ) :〉 1, an unique endemic equilibrium exists and islocally asymptotically stable under certain condition.展开更多
In this paper, to complete the global dynamics of a multi-strains SIS epidemic model, we establish a precise result on coexistence for the cases of the partial and complete duplicated multiple largest reproduction rat...In this paper, to complete the global dynamics of a multi-strains SIS epidemic model, we establish a precise result on coexistence for the cases of the partial and complete duplicated multiple largest reproduction ratios for this model.展开更多
In this paper, an epidemic SIS model with nonlinear infectivity on heterogeneous networks and time delays is investigated. The oscillatory behavior of the solutions is studied. Two sufficient conditions are provided t...In this paper, an epidemic SIS model with nonlinear infectivity on heterogeneous networks and time delays is investigated. The oscillatory behavior of the solutions is studied. Two sufficient conditions are provided to guarantee the oscillatory behavior for the solutions. Some computer simulations are demonstrated.展开更多
The aim of this paper is to study the diffusion. We first study the well-posedness of the dynamics of an SIS epidemic model with model. And then, by using linearization method and constructing suitable Lyapunov functi...The aim of this paper is to study the diffusion. We first study the well-posedness of the dynamics of an SIS epidemic model with model. And then, by using linearization method and constructing suitable Lyapunov function, we establish the local and global stability of the disease-free equilibrium and the endemic equilibrium, respectively. Furthermore, in view of Schauder fixed point theorem, we show that the model admits traveling wave solutions con- necting the disease-free equilibrium and the endemic equilibrium when R0 〉 1 and c 〉 c^*. And also, by virtue of the two-sided Laplace transform, we prove that the model has no traveling wave solution connecting the two equilibria when R0 〉 1 and c ∈(0, c^*).展开更多
A numerical scheme for a SIS epidemic model with a delay is constructed by applying a nonstandard finite difference (NSFD) method. The dynamics of the obtained discrete system is investigated. First we show that the d...A numerical scheme for a SIS epidemic model with a delay is constructed by applying a nonstandard finite difference (NSFD) method. The dynamics of the obtained discrete system is investigated. First we show that the discrete system has equilibria which are exactly the same as those of continuous model. By studying the distribution of the roots of the characteristics equations related to the linearized system, we can provide the stable regions in the appropriate parameter plane. It is shown that the conditions for those equilibria to be asymptotically stable are consistent with the continuous model for any size of numerical time-step. Furthermore, we also establish the existence of Neimark-Sacker bifurcation (also called Hopf bifurcation for map) which is controlled by the time delay. The analytical results are confirmed by some numerical simulations.展开更多
基金This work is supported by National Natural Science Foundation of China (10171106)the Special Fund for Major State Basic Research Projects (G1999032805)
文摘A disease transmission model of SI type with stage structure is formulated. The stability of disease free equilibrium, the existence and uniqueness of an endemic equilibrium, the existence of a global attractor are investigated.
文摘Epidemiologic model of SIS type has a delay corresponding to the infectious period and disease related deaths,so that the population size is variable.The population dynamics structure is recruitment and natural births with natural deaths.The incidence term is of the standard incidence.Here the thresholds and equilibria are detemined,and stabilities are examined.The persistence of the infectious disease and disease related deaths can lead to a new equilibrium population size below the carrying capacity.
基金Supported by the NSF of China(10371105) Supported by the Youth Science Foundation of Xinyang Normal University(20060202)
文摘A simple SI epidemic model with age of vaccination is discussed in this paper.Both vexing birth rate, the mortality rate caused by disease and vaccine waning rate areconsidered in this model. We prove that the global dynamics is completely determined bythe basic reproductive number R(ψ)(ψ denotes per capita vaccination rate). If R(0) 〈 1,the disease-free equilibrium is a global attractor; If R(ψ) 〈: 1, the disease-free equilibriumis locally asymptotically stable; If R(ψ) :〉 1, an unique endemic equilibrium exists and islocally asymptotically stable under certain condition.
文摘In this paper, to complete the global dynamics of a multi-strains SIS epidemic model, we establish a precise result on coexistence for the cases of the partial and complete duplicated multiple largest reproduction ratios for this model.
文摘In this paper, an epidemic SIS model with nonlinear infectivity on heterogeneous networks and time delays is investigated. The oscillatory behavior of the solutions is studied. Two sufficient conditions are provided to guarantee the oscillatory behavior for the solutions. Some computer simulations are demonstrated.
基金Partially supported by the NSF of Guangdong Province(2016A030313426)the HLUCF of South China Normal University(2016YN30)
文摘The aim of this paper is to study the diffusion. We first study the well-posedness of the dynamics of an SIS epidemic model with model. And then, by using linearization method and constructing suitable Lyapunov function, we establish the local and global stability of the disease-free equilibrium and the endemic equilibrium, respectively. Furthermore, in view of Schauder fixed point theorem, we show that the model admits traveling wave solutions con- necting the disease-free equilibrium and the endemic equilibrium when R0 〉 1 and c 〉 c^*. And also, by virtue of the two-sided Laplace transform, we prove that the model has no traveling wave solution connecting the two equilibria when R0 〉 1 and c ∈(0, c^*).
文摘A numerical scheme for a SIS epidemic model with a delay is constructed by applying a nonstandard finite difference (NSFD) method. The dynamics of the obtained discrete system is investigated. First we show that the discrete system has equilibria which are exactly the same as those of continuous model. By studying the distribution of the roots of the characteristics equations related to the linearized system, we can provide the stable regions in the appropriate parameter plane. It is shown that the conditions for those equilibria to be asymptotically stable are consistent with the continuous model for any size of numerical time-step. Furthermore, we also establish the existence of Neimark-Sacker bifurcation (also called Hopf bifurcation for map) which is controlled by the time delay. The analytical results are confirmed by some numerical simulations.