To investigate the effect of different environmental conditions of GFRP bars in concrete beams with work cracks subjected to sustained loads, the beams were exposed in indoor, freeze/thaw cycles and immersed in alkali...To investigate the effect of different environmental conditions of GFRP bars in concrete beams with work cracks subjected to sustained loads, the beams were exposed in indoor, freeze/thaw cycles and immersed in alkaline solution at elevated temperature. The bars were carefully extracted from the beams and tested in order to evaluate residual tensile properties. The results show that the tensile strength decreased significantly in the highly aggressive conditions but not in the natural conditions. The effect of GFRP bars casting in concrete beams demonstrated approximately 2.5% decrease of tensile strength caused by pore water environment in concrete beams on basis of those of the original bars. The effect of sustained loading plus work cracks demonstrated about 10.5% tensile strength decrease on basis of those of the bars only casted in concrete beams. The effect of environments under sustained loading plus work cracks demonstrated about 17% tensile strength decrease caused by a saturated solution of Ca(OH)2 and 60-2 ℃ tap water (pH=12-13) and about 8% tensile strength decrease caused by freezing and thawing cycle (F/T), both on basis of those of the bars of the indoor beams only under sustained loading plus work cracks. The results demonstrate the effects of the tensile strengths under different environmental conditions of GFRP bars in concrete beams with work cracks subjected to sustained loads.展开更多
The article aimed to study the durability of steel fiber reinforced concrete under the coupled sewage-loading according to compressive strength,flexural strength,compressive strength corrosion coefficient,flexural str...The article aimed to study the durability of steel fiber reinforced concrete under the coupled sewage-loading according to compressive strength,flexural strength,compressive strength corrosion coefficient,flexural strength corrosion coefficient,compressive strength balance coefficient,flexural strength balance coefficient.Through the homemade load frame applied to design specimens,the pre-loading level are equivalent the damage intensity of 0%,10%,30% and 50% four different ways.The experimental results show that the performance of concrete down gradually and sustaining load aggravated the degree of domestic sewage attacking concrete after six month;under different stress states,the more loading levels,the more serious domestic sewage attacked the steel fiber reinforced concrete.It is proved that the concrete damage can be inhibited by adding the steel fiber,when steel fiber volume fraction is 1.0%,the corrosion resistance of concrete is best.展开更多
The test results of eight concrete beams reinforced with carbon fiber reinforced polymer (CFRP) sheets subjected to an aggressive environment under a sustained load are presented. The beams are 1 700 mm long with a ...The test results of eight concrete beams reinforced with carbon fiber reinforced polymer (CFRP) sheets subjected to an aggressive environment under a sustained load are presented. The beams are 1 700 mm long with a rectangular cross-section of 120- mm width and 200-mm depth. The beams are precracked with a four-point flexural load, bonded CFRP sheets, and placed into wet-dry saline water( NaCl) either in an unstressed state or loaded to about 30% or 60% of the initial ultimate load. The individual and coupled effects of wet-dry saline water and sustained bending stresses on the long term behaviour of concrete beams reinforced with the CFRP are investigated. The test results show that the coupled action of wet-dry saline water and sustained bending stresses appears to significantly affect the load capacity and the failure mode of beam strengthened with CFRP, mainly due to the degradation of the bond between CFRP and concrete. However, the stiffness is not affected by the coupled action of wet-dry cycles and a sustained load.展开更多
Textile reinforced concrete(TRC)has good bearing capacity,crack resistance and corrosion resistance and it is suitable for repairing and reinforcing concrete structures in harsh marine environments.The four-point bend...Textile reinforced concrete(TRC)has good bearing capacity,crack resistance and corrosion resistance and it is suitable for repairing and reinforcing concrete structures in harsh marine environments.The four-point bending method was used to analyze the influence of the salt concentration,the damage degree and the coupled effect of the environment and load on the bending performance of TRC-strengthened beams with a secondary load.The results showed that as the salt concentration increased,the crack width and mid-span deflection of the beam quickly increased,and its bearing capacity decreased.As the damage degree increased,the early-stage crack development and mid-span deflection of the beam were less affected and the ultimate bearing capacity significantly decreased.In addition,the coupled effect of the environment and load on the beams with a secondary load was significant.As the sustained load increased,the ultimate bearing capacity of the strengthened beam decreased,and cracks developed faster in the later stage.In addition,the mid-span deflection of the beam decreased at the same load level because of the influence of the initial deflection due to the sustained load corrosion.展开更多
Seven reinforced concrete ( RC ) beams strengthened in flexure using carbon fiber reinforced polymer (CFRP) sheets subjected to different sustaining loads were tested. The effects of initial load and load history ...Seven reinforced concrete ( RC ) beams strengthened in flexure using carbon fiber reinforced polymer (CFRP) sheets subjected to different sustaining loads were tested. The effects of initial load and load history on the ultimate strength of strengthened RC beams were examined by externally bonded CFRP sheets. The main experimental parameters included different levels of sustaining load at the time of strengthening, and load history. Experimental results show that sustaining load levels at the time of strengthening have important influences on the ultimate strength of strengthened RC beams. If the initial load is the same, the ultimate strength of RC beams strengthened with CFRP sheets is almost the same regardless of load history at the time of strengthening.展开更多
基金Funded Partly by the National Natural Science Foundation of China(No.51178361)
文摘To investigate the effect of different environmental conditions of GFRP bars in concrete beams with work cracks subjected to sustained loads, the beams were exposed in indoor, freeze/thaw cycles and immersed in alkaline solution at elevated temperature. The bars were carefully extracted from the beams and tested in order to evaluate residual tensile properties. The results show that the tensile strength decreased significantly in the highly aggressive conditions but not in the natural conditions. The effect of GFRP bars casting in concrete beams demonstrated approximately 2.5% decrease of tensile strength caused by pore water environment in concrete beams on basis of those of the original bars. The effect of sustained loading plus work cracks demonstrated about 10.5% tensile strength decrease on basis of those of the bars only casted in concrete beams. The effect of environments under sustained loading plus work cracks demonstrated about 17% tensile strength decrease caused by a saturated solution of Ca(OH)2 and 60-2 ℃ tap water (pH=12-13) and about 8% tensile strength decrease caused by freezing and thawing cycle (F/T), both on basis of those of the bars of the indoor beams only under sustained loading plus work cracks. The results demonstrate the effects of the tensile strengths under different environmental conditions of GFRP bars in concrete beams with work cracks subjected to sustained loads.
基金Funded by the National Natural Science Foundation of China (2008A430015)the Natural Science Foundation of Henan Educational Department of China(50879048)
文摘The article aimed to study the durability of steel fiber reinforced concrete under the coupled sewage-loading according to compressive strength,flexural strength,compressive strength corrosion coefficient,flexural strength corrosion coefficient,compressive strength balance coefficient,flexural strength balance coefficient.Through the homemade load frame applied to design specimens,the pre-loading level are equivalent the damage intensity of 0%,10%,30% and 50% four different ways.The experimental results show that the performance of concrete down gradually and sustaining load aggravated the degree of domestic sewage attacking concrete after six month;under different stress states,the more loading levels,the more serious domestic sewage attacked the steel fiber reinforced concrete.It is proved that the concrete damage can be inhibited by adding the steel fiber,when steel fiber volume fraction is 1.0%,the corrosion resistance of concrete is best.
基金The National Natural Science Foundation of China(No.50608013)Special Prophase Project on Basic Research of the National Department of Science and Technology(No.2004CCA04100)
文摘The test results of eight concrete beams reinforced with carbon fiber reinforced polymer (CFRP) sheets subjected to an aggressive environment under a sustained load are presented. The beams are 1 700 mm long with a rectangular cross-section of 120- mm width and 200-mm depth. The beams are precracked with a four-point flexural load, bonded CFRP sheets, and placed into wet-dry saline water( NaCl) either in an unstressed state or loaded to about 30% or 60% of the initial ultimate load. The individual and coupled effects of wet-dry saline water and sustained bending stresses on the long term behaviour of concrete beams reinforced with the CFRP are investigated. The test results show that the coupled action of wet-dry saline water and sustained bending stresses appears to significantly affect the load capacity and the failure mode of beam strengthened with CFRP, mainly due to the degradation of the bond between CFRP and concrete. However, the stiffness is not affected by the coupled action of wet-dry cycles and a sustained load.
基金Project(2017XKZD09)supported by the Fundamental Research Funds for the Central Universities,China
文摘Textile reinforced concrete(TRC)has good bearing capacity,crack resistance and corrosion resistance and it is suitable for repairing and reinforcing concrete structures in harsh marine environments.The four-point bending method was used to analyze the influence of the salt concentration,the damage degree and the coupled effect of the environment and load on the bending performance of TRC-strengthened beams with a secondary load.The results showed that as the salt concentration increased,the crack width and mid-span deflection of the beam quickly increased,and its bearing capacity decreased.As the damage degree increased,the early-stage crack development and mid-span deflection of the beam were less affected and the ultimate bearing capacity significantly decreased.In addition,the coupled effect of the environment and load on the beams with a secondary load was significant.As the sustained load increased,the ultimate bearing capacity of the strengthened beam decreased,and cracks developed faster in the later stage.In addition,the mid-span deflection of the beam decreased at the same load level because of the influence of the initial deflection due to the sustained load corrosion.
文摘Seven reinforced concrete ( RC ) beams strengthened in flexure using carbon fiber reinforced polymer (CFRP) sheets subjected to different sustaining loads were tested. The effects of initial load and load history on the ultimate strength of strengthened RC beams were examined by externally bonded CFRP sheets. The main experimental parameters included different levels of sustaining load at the time of strengthening, and load history. Experimental results show that sustaining load levels at the time of strengthening have important influences on the ultimate strength of strengthened RC beams. If the initial load is the same, the ultimate strength of RC beams strengthened with CFRP sheets is almost the same regardless of load history at the time of strengthening.