Specific and sustained release of nutrients from capsules to the gastrointestinal tract has attracted many attentions in the field of food and drug delivery.In this work,we reported a monoaxial dispersion electrospray...Specific and sustained release of nutrients from capsules to the gastrointestinal tract has attracted many attentions in the field of food and drug delivery.In this work,we reported a monoaxial dispersion electrospraying-ionotropic gelation technique to prepare multicore millimeter-sized spherical capsules for specific and sustained release of fish oil.The spherical capsules had diameters from 2.05 mm to 0.35 mm with the increased applied voltages.The capsules consisted of uniform(at applied voltages of≤10 k V)or nonuniform(at applied voltages of>10 k V)multicores.The obtained capsules had reasonable loading ratios(9.7%-6.3%)due to the multicore structure.In addition,the obtained capsules had specific and sustained release behaviors of fish oil into the small intestinal phase of in vitro gastrointestinal tract and small intestinal tract models.The simple monoaxial dispersion electrospraying-ionotropic gelatin technique does not involve complicated preparation formulations and polymer modification,which makes the technique has a potential application prospect for the fish oil preparations and the encapsulation of functional active substances in the field of food and drug industries.展开更多
The low utilization rate of pesticides makes the migration of pesticides in water and soil,which brings great harm to the ecosystem.The development of pesticide carriers with good drug loading capacity and release con...The low utilization rate of pesticides makes the migration of pesticides in water and soil,which brings great harm to the ecosystem.The development of pesticide carriers with good drug loading capacity and release control abil-ity is an effective method to realize effective utilization of pesticides and reduce pesticide losses.In this work,fosthiazate-stearic acid/expanded perlite sustained-release particles were successfully prepared by vacuum impregnation using expanded perlite(EP)as carrier,fosthiazate(FOS)as model pesticide and stearic acid(SA)as hydrophobic matrix.The structure and morphology of the samples were studied by BET,FT-IR,TGA,XRD,DSC and SEM.The effects of different mass ratios of FOS to SA on loading capacity and release rate at 24 h were investigated.The sustained release behavior of FOS-SA/EP at different temperatures and pH values was investigated by static dialysis bag method.The results showed that FOS and SA were adsorbed in EP pores by physical interaction.With the mass ratios of FOS to SA decreasing from 7:3 to 3:7,the 24 h release rate of FOS-SA/EP decreased from 18.77%to 8.05%,and the drug loading decreased from 461.32 to 130.99 mg/g.FOS-SA/EP showed obvious temperature response at 25℃,30℃ and 35℃,the cumulative release rate(CRR)of 200 h were 33.38%,41.50%and 51.17%,respectively.When pH=5,the CRR of FOS was higher than that of pH=7,and the CRR of FOS for 200 h were 49.01%and 30.12%,respectively.At different temperatures and pH=5,the release mechanism of FOS-SA/EP belongs to the Fickian diffusion mechanism;When pH=7,the diffusion mechanism is dominant,and the dissolution mechanism is complementary.展开更多
[Objectives] To study the coating process of paeonol sustained release pills by extrusion-spheronization method taking ethyl cellulose as the coating material. [Methods] Paeonol pills were made by Auari AW-95 Full Aut...[Objectives] To study the coating process of paeonol sustained release pills by extrusion-spheronization method taking ethyl cellulose as the coating material. [Methods] Paeonol pills were made by Auari AW-95 Full Automatic Pill Making Machine. Coating of paeonol sustained release pills was prepared by Auari Mini Pill Polishing Machine. The prescription and process factors of paeonol sustained release pills coating were investigated by single factor experiment and orthogonal experiment. The release of paeonol sustained release pills was determined according to the cumulative release curve of paeonol. [Results] The prepared paeonol sustained release pills released slowly within 24 h, and the release rate reached 80% in 12 h. [Conclusions] The prepared paeonol sustained release pills basically meet the 24 h sustained release standard, and can be further developed and applied.展开更多
Aim To prepare the sustained release melatonin tablet with HPMC matrix and study its pharmacokinetics and bioavailatility. Methods HPMC was used as matrix to formulate the sustained release tablet. The influences of t...Aim To prepare the sustained release melatonin tablet with HPMC matrix and study its pharmacokinetics and bioavailatility. Methods HPMC was used as matrix to formulate the sustained release tablet. The influences of the size of melatonin, type and amount of HPMC, drug loading, type and amount of additives, and compressing pressure were investigated. Plasma concentration of melatonin in dogs after intravenous injection of two doses and oral administration of sustained release tablets and unmodified release capsules was detected by HPLC using fluorescence detector. Results The drug release from sustained release tablets was influenced by the size of melatonin, type and amount of HPMC, drug loading, and type and amount of additives. Melatonin was found to fit two compartment model after intravenous injection, AUC was proportional to doses, and t(1/2β) of two doses has no significant difference. Relative bioavailability of melatonin sustained release tablet to normal capsule was 83.8%, and absolute bioavailability was 3.75% for sustained release tablet and 4.49% for capsule. Conclusion The melatonin sustained release tablet was well formulated. The absolute bioavilability for oral administration of either sustained release tablet or unmodified release capsule of melatonin was less than 5%. The bioavailability of melatonin sustained release tablet was lower than that of unmodified release capsule, but MRT of sustained release tablet was significantly longer than that of capsule.展开更多
Our previous studies have successfully grafted biotin and galactose onto chitosan(CS)and synthesized biotin modified galactosylated chitosan(Bio-GC).The optimum N/P ratio of Bio-GC and plasmid DNA was 3:1.At this N/P ...Our previous studies have successfully grafted biotin and galactose onto chitosan(CS)and synthesized biotin modified galactosylated chitosan(Bio-GC).The optimum N/P ratio of Bio-GC and plasmid DNA was 3:1.At this N/P ratio,the transfection efficiency in the hepatoma cells was the highest with a slow release effect.Bio-GC nanomaterials exhibit the protective effect of preventing the gene from nuclease degradation,and can target the transfection into hepatoma cells by combination with galactose and biotin receptors.The transfection rate was inhibited by the competition of galactose and biotin.Bio-GC nanomaterials were imported into cells’cytoplasm by their receptors,followed by the imported exogenous gene transfected into the cells.Bio-GC nanomaterials can also cause inhibitory activity in the hepatoma cells in the model of orthotopic liver transplantation in mice,by carrying the gene through the blood to the hepatoma tissue.Taken together,bio-GC nanomaterials act as gene vectors with the activity of protecting the gene from DNase degradation,improving the rate of transfection in hepatoma cells,and transporting the gene into the cytoplasm in vitro and in vivo.Therefore,they are efficient hepatoma-targeting gene carriers.展开更多
Monomethyl auristatin E(MMAE)is a derivative of the marine peptide Dolastatin 10,which has therapeutic effects against various cancers according to its antimitotic activity in multiple clinical trials.The antibody dru...Monomethyl auristatin E(MMAE)is a derivative of the marine peptide Dolastatin 10,which has therapeutic effects against various cancers according to its antimitotic activity in multiple clinical trials.The antibody drug conjugate(ADC)of MMAE is currently used in clinical practice.However,the safety issues of MMAE-based ADC,such as high drug toxicity and poor bioavailability,still exist when using it for anticancer therapy.A sustained release of drug delivery approach should be used to reduce toxicity and achieve sufficient anticancer effects.Herein,PLGA-b-PEG 2000 with excellent biocompatibility and slow degradation ability was adopted to construct MMAE-loaded nanoparticles for safe and effective chemotherapy.The sustained release effect and the immunogenic cell death(ICD)effect of PLGA-MMAE nanoparticles were assessed by in vitro experiments.The PLGA-MMAE nanoparticles effectively accumulated in the tumor through the enhanced permeability and retention(EPR)effect,inducing cell apoptosis and causing a certain degree of immune response.The sustained drug release of PLGA-MMAE improved the bioavailability and effectively reduced the toxicity and development of the tumor compared to the effect of free MMAE or ADC.Overall,this study provides a safe and effective chemotherapeutic approach,as well as a simple and effective synthetic process for MMAE-based nanoparticles,improving their therapeutic efficacy and safety.展开更多
This study explores the controllable synthesis of CuAlO_(2) using copper hydroxide and pseudo-boehmite powders as raw materials via a simple solid-phase ball milling method,along with its catalytic performance investi...This study explores the controllable synthesis of CuAlO_(2) using copper hydroxide and pseudo-boehmite powders as raw materials via a simple solid-phase ball milling method,along with its catalytic performance investigation in methanol steam reforming(MSR).Various catalysts were prepared under different conditions,such as calcination temperature,calcination atmosphere,and heating rate.Characterization techniques including BET,XRD,XPS,SEM and H2-TPR were employed to analyze the samples.The results revealed significant effects of calcination temperature on the phase compositions,specific surface area,reduction performance,and surface properties of the CA-T catalysts.Based on the findings,a synthesis route of CuAlO_(2) via the solid-phase method was proposed,highlighting the importance of high calcination temperature,nitrogen atmosphere,and low heating rate for CuAlO_(2) formation.Catalytic evaluation data demonstrated that CuAlO_(2) could catalyze MSR without pre-reduction,with the catalytic performance of CA-T catalysts being notably influenced by calcination temperature.Among the prepared catalysts,the CA-1100 catalyst exhibited the highest catalytic activity and stability.The findings of this study might be useful for the further study of the catalytic material for sustained release catalysis,including the synthesis of catalytic materials and the regulation of sustained release catalytic performance.展开更多
To investigate the pharmacokinetic characteristics of moclobemide sustainedrelease tablets after multiple oral dose administration in healthy Chinese volunteers. MethodsMoclobemide sustained release tablets were given...To investigate the pharmacokinetic characteristics of moclobemide sustainedrelease tablets after multiple oral dose administration in healthy Chinese volunteers. MethodsMoclobemide sustained release tablets were given as a multiple oral dose regimen of 300 mg oncedaily for five consecutive days to 12 healthy volunteers. The concentrations of moclobemide inplasma were determined by reversed-phase high performance liquid chromatography. The partialpharmacokinetic parameters were calculated using 3p97 pharmacokinetic program. Results Theconcentration-time profile fitted an one-compartment model best. The steady-state pharmacokineticparameters of moclobemide sustained release tablets after multiple oral doses were as follows:C_(max) was (1 950 +- 156) μg· L^(-1), T_(max) was (6.00 +-1.55) h, T_(1/2(kel)) was (3.14 +-0.12)h, AUC_(ss 0-24) was (22 836 +- 1 842) μg·h· L^(-1), MRT was (7.68+-0.36) h, CL/F_((s)) was(20.2+-2.1) L·h^(-1), and V/F_((c)) was (91.4+-9.4) L, respectively. No marked adverse events werenoted during this study. Conclusion The formulation has a sustained-release effect and goodtolerance in the healthy volunteers, which provides useful information for clinical practice.展开更多
Sustained release Eudragit RL/RS microspheres encapsulating nifedipine were prepared using the acetone/liquid paraffin emulsion solvent evaporation method. The influence of different preparation factors on release o...Sustained release Eudragit RL/RS microspheres encapsulating nifedipine were prepared using the acetone/liquid paraffin emulsion solvent evaporation method. The influence of different preparation factors on release of the drug in vitro was investigated. The release rate of nifedipine from the microspheres increased with increasing Eudragit RL/RS ratio and stirring rate during the preparation, and with decreasing the polymer concentration of internal phase and microsphere size. It was found that a linear relationship existed between the microsphere size and the time of 50% drug release. The drug release rate increased with increasing nifedipine content from 4.2 to 16.7% and was more rapid than the dissolution rate of pure nifedipine particles. However, the release rate of the microspheres with 26.6% drug content decreased significantly and was slower than the dissolution rate of pure drug particles. This was attributed mainly to the nifedipine dispersion state in the microspheres as confirmed by the differential thermal analysis and X ray diffraction study, which showed that nifedipine was present in an amorphous or molecular state in the microspheres with 4.2, 9.4 and 16.7% drug, whereas partly in the crystalline state in the microspheres with 26.6% drug. The amounts released for less than 70% nifedipine can be fitted to Higuchi square root of time model, independent of polymer ratio, drug content and microsphere size.展开更多
Exosomes derived from mesenchymal stem cells are of therapeutic interest because of their important role in intracellular communication and biological regulation.On the basis of previously studied nerve conduits,we de...Exosomes derived from mesenchymal stem cells are of therapeutic interest because of their important role in intracellular communication and biological regulation.On the basis of previously studied nerve conduits,we designed a polydopamine-modified chitin conduit loaded with mesenchymal stem cell-derived exosomes that release the exosomes in a sustained and stable manner.In vitro experiments revealed that rat mesenchymal stem cell-derived exosomes enhanced Schwann cell proliferation and secretion of neurotrophic and growth factors,increased the expression of Jun and Sox2 genes,decreased the expression of Mbp and Krox20 genes in Schwann cells,and reprogrammed Schwann cells to a repair phenotype.Furthermore,mesenchymal stem cell-derived exosomes promoted neurite growth of dorsal root ganglia.The polydopamine-modified chitin conduits loaded with mesenchymal stem cell-derived exosomes were used to bridge 2 mm rat sciatic nerve defects.Sustained release of exosomes greatly accelerated nerve healing and improved nerve function.These findings confirm that sustained release of mesenchymal stem cell-derived exosomes loaded into polydopamine-modified chitin conduits promotes the functional recovery of injured peripheral nerves.展开更多
This study aimed to prepare poly(D, L-lactic-co-glycolic acid) microspheres(PLGA-Ms)by a modified solid-in-oil-in-water(S/O/W) multi-emulsion technique in order to achieve sustained release with reduced initial burst ...This study aimed to prepare poly(D, L-lactic-co-glycolic acid) microspheres(PLGA-Ms)by a modified solid-in-oil-in-water(S/O/W) multi-emulsion technique in order to achieve sustained release with reduced initial burst and maintain efficient drug concentration for a prolonged period of time. Composite PLGA microspheres containing exenatideencapsulated lecithin nanoparticles(Ex-NPs-PLGA-Ms) were obtained by initial fabrication of exenatide-loaded lecithin nanoparticles(Ex-NPs) via the alcohol injection method,followed by encapsulation of Ex-NPs into PLGA microspheres. Compared to Ms prepared by the conventional water-in-oil-in-water(W/O/W) technique(Ex-PLGA-Ms), Ex-NPs-PLGAMs showed a more uniform particle size distribution, reduced initial burst release, and sustained release for over 60 d in vitro. Cytotoxicity studies showed that Ms prepared by both techniques had superior biocompatibility without causing any detectable cytotoxicity.In pharmacokinetic studies, the effective drug concentration was maintained for over 30 d following a single subcutaneous injection of two types of Ms formulation in rats, potentially prolonging the therapeutic action of Ex. In addition, administration of Ex-NPs-PLGA-Ms resulted in a more smooth plasma concentration-time profile with a higher area under the curve(AUC) compared to that of Ex-PLGA-Ms. Overall, Ex-NPs-PLGA-Ms prepared by the novel S/O/W method could be a promising sustained drug release system with reduced initial burst release and prolonged therapeutic efficacy.展开更多
Silver nanoparticles (Ag NPs) can effectively address the issue of antibiotic-resistant bacterial infections to reduce the potential toxicity of Ag NPs. Although challenging, it is, therefore, necessary to achieve the...Silver nanoparticles (Ag NPs) can effectively address the issue of antibiotic-resistant bacterial infections to reduce the potential toxicity of Ag NPs. Although challenging, it is, therefore, necessary to achieve the sustainable release of Ag+ ions from a finite amount of Ag NPs. This study aims at designing an efficient and benign antimicrobial silver-based ternary composite composed of photocatalysis zinc oxide (ZnO) and reduced graphene oxide (rGO) as a carrier, in which the reactive oxygen species (ROS) excited from ZnO and Ag+ ions released from the Ag NPs cooperate to realize an effective antibacterial activity against E. coli and S. aureus. The constant effective bacterial performance of the ternary photocatalyst with minimum Ag content can be attributed to the increase in the available quantity of ROS, which results from the enhanced separation efficiency of the photogenerated carriers. The proposed system notably realized the long-term sustainable release of Ag+ ions with low concentration for 30 days when compared with an equivalent amount of silver nitrate. Moreover, the use of the composite prevents biotoxicity and silver wastage, and imparts enhanced stability to the long-lasting antibacterial efficacy.展开更多
The purpose of this study was to develop a PLGA microspheres-based donepezil(DP)formulation which was expected to sustain release of DP for one week with high encapsulation efficiency(EE).DP derived from donepezil hyd...The purpose of this study was to develop a PLGA microspheres-based donepezil(DP)formulation which was expected to sustain release of DP for one week with high encapsulation efficiency(EE).DP derived from donepezil hydrochloride was encapsulated in PLGA microspheres by the O/W emulsion-solvent evaporation method.The optimized formulation which avoided the crushing of microspheres during the preparation process was characterized in terms of particle size,morphology,drug loading and EE,physical state of DP in the matrix and in vitro and in vivo release behavior.DP microspheres were prepared successfully with average diameter of 30m,drug loading of 15.92±0.31%and EE up to 78.79±2.56%.Scanning electron microscope image showed it has integrated spherical shape with no drug crystal and porous on its surface.Differential scanning calorimetry and X-ray diffraction results suggested DP was in amorphous state or molecularly dispersed in microspheres.The Tg of PLGA was increased with the addition of DP.The release profile in vitro was characterized with slow but continuous release that lasted for about one week and fitted well with first-order model,which suggested the diffusion governing release mechanism.After single-dose administration of DP microspheres via subcutaneous injection in rats,the plasma concentration of DP reached peak concentration at 0.50 d,and then declined gradually,but was still detectable at 15 d.A good correlation between in vitro and in vivo data was obtained.The results suggest the potential use of DP microspheres for treatment of Alzheimer’s disease over long periods.展开更多
Coated microneedles(MNs) are widely used for delivering biopharmaceuticals. In this study, a novel gel encapsulated coated MNs(GEC-MNs) was developed. The water-soluble drug coating was encapsulated with sodium algina...Coated microneedles(MNs) are widely used for delivering biopharmaceuticals. In this study, a novel gel encapsulated coated MNs(GEC-MNs) was developed. The water-soluble drug coating was encapsulated with sodium alginate(SA) in situ complexation gel. The manufacturing process of GEC-MNs was optimized for mass production. Compared to the water-soluble coated MNs(72.02% ± 11.49%), the drug delivery efficiency of the optimized GEC-MNs(88.42% ± 6.72%) was steadily increased, and this improvement was investigated through in vitro drug release. The sustained-release of BSA was observed in vitro permeation through the skin. The rhIFN α-1 b GEC-MNs was confirmed to achieve biosafety and 6-month storage stability. Pharmacokinetics of rhIFN α-1 b in GEC-MNs showed a linearly dosedependent relationship. The AUC of rhIFN α-1 b in GEC-MNs(4.51 ng/ml ·h) was bioequivalent to the intradermal(ID) injection(5.36 ng/ml ·h) and significantly higher than water-soluble coated MNs(3.12 ng/ml ·h). The rhIFN α-1 b elimination half-life of GEC-MNs, soluble coated MNs, and ID injection was 18.16, 1.44, and 2.53 h, respectively. The complexation-based GECMNs have proved to be more efficient, stable, and achieve the sustained-release of watersoluble drug in coating MNs, constituting a high value to biopharmaceutical.展开更多
Environmental cleaning is an important aspect of bacteria control.Ethyl cellulose microcapsules containing potassium monopersulfate(PMCM)were prepared by emulsified solvent diffusion method.The chemical structure and ...Environmental cleaning is an important aspect of bacteria control.Ethyl cellulose microcapsules containing potassium monopersulfate(PMCM)were prepared by emulsified solvent diffusion method.The chemical structure and microstructure of the obtained PMCM was characterized by methods of Fourier transform infrared spectroscopy(FT-IR),optical microscopy,scanning electron microscopy and X-ACT energy dispersive X-ray spectroscopy.The SEM micrographs of the PMCM containing 21.6%of C,46.8%of O,10.7%of S and 19.4%of K was relatively smooth.Thermal stability,sustained release performance,and antimicrobial activity of PMCM were investigated.The results showed that the drug loading and encapsulation efficiency of PMCM were 30.3%and 42.6%respectively.Potassium monopersulfate was fully released after 8 h,following a Fickian diffusion mechanism.Results showed that the microcapsules prepared with a high concentration of potassium monopersulfate solution showed a good antimicrobial effect.The microcapsule wall of the resulting PMCM increased with increasing ethyl cellulose content and had high thermal stability from the data of 69%residue rate.The excellent thermal stability and high sustained release performance of PMCM showed high application value.展开更多
Parenteral sustained release drug formulations, acting as preferable platforms for longterm exposure therapy, have been wildly used in clinical practice. However, most of these delivery systems must be given by hypode...Parenteral sustained release drug formulations, acting as preferable platforms for longterm exposure therapy, have been wildly used in clinical practice. However, most of these delivery systems must be given by hypodermic injection. Therefore, issues including needle-phobic, needle-stick injuries and inappropriate reuse of needles would hamper the further applications of these delivery platforms. Microneedles (MNs) as a potential alternative system for hypodermic needles can benefit from minimally invasive and self-administration. Recently, polymeric microneedle-mediated sustained release systems (MN@SRS) have opened up a new way for treatment of many diseases. Here, we reviewed the recent researches in MN@SRS for transdermal delivery, and summed up its typical design strategies and applications in various diseases therapy, particularly focusing on the applications in contraception, infection, cancer, diabetes, and subcutaneous disease. An overview of the present clinical translation difficulties and future outlook of MN@SRS was also provided.展开更多
In this study,diltiazem hydrochloride(DTZ)pellets were prepared successfully by extrusionespheronization method.Then methacrylic acid and ethylcellulose coating formulations were employed to make the DTZ pellets sus...In this study,diltiazem hydrochloride(DTZ)pellets were prepared successfully by extrusionespheronization method.Then methacrylic acid and ethylcellulose coating formulations were employed to make the DTZ pellets sustained release.The pellets with different coatings were investigated by in vitro dissolution tests.At last,the pellets with the best coating copolymer were subjected to pharmacokinetic studies in beagle dogs.The dissolution profiles of pellets coated with EudragitNE30D were similar to Herbesser,one of the marketed sustained release capsules.In the bioavailability study,the principal pharmacokinetic parameters of self-made pellets and the marketed ones were comparable;the relative bioavailability of DTZ sustained release capsules compared with Herbesserwas 98.536.4%.All the data indicated self-made sustained pellets could prolong the release of DTZ,decrease the fluctuation of drug level in vivo,and increase the compliance of patients.展开更多
The captopril/Chitosan-gelatin net-polymer microspheres(CTP/CGNPMs) were prepared using Chitosan(CTS) and gelatin(GT) by the methods of emulsification,cross-linked reagent alone or in combination and microcrystalline ...The captopril/Chitosan-gelatin net-polymer microspheres(CTP/CGNPMs) were prepared using Chitosan(CTS) and gelatin(GT) by the methods of emulsification,cross-linked reagent alone or in combination and microcrystalline cellulose(MCC) added in the process of preparation of microspheres,which aimed to eliminate dose dumping and burst phenomenon of microspheres for the improvement of the therapeutic efficiency and the decrease of the side effects of captopril(CTP). The results indicated that CTP/CGNPMs had a spherical shape,smooth surface and integral structure inside but no adhesive phenomena in the preparation. The size distribution ranged from 220 μm to 280 μm. The CTP release test in vitro demonstrated that CTP/CGNPMs played the role of retarding the release of CTP compared with ordinary CTP tablets. The release behaviors of CGNPMS were influenced by preparation conditions such as experimental material ratio(EMR) and composition of cross linking reagents. Among these factors,the EMR(1/4),CLR(FA+SPP) and 0.75% microcrystalline cellulose(MCC) added to the microspheres constituted the optimal scheme for the preparation of CTP/CGNPMs. The ER,DL and SR of CTP/CGNPMs prepared according to the optimal scheme were 46.23±4.51%,9.95±0.77% and 261±42%,respectively. The CTP/CGNPMs had the good characteristics of sustained release of drug and the process of emulsification and cross-linking were simple and stable. The CGNPMs are likely to be an ideal sustained release formulation for water-soluble drugs.展开更多
We applied a combination of inorganic mesoporous silica material,frequently used as drug carriers,and a natural organic polymer alginate(ALG),to establish a sustained drug delivery system for the poorly water-soluble ...We applied a combination of inorganic mesoporous silica material,frequently used as drug carriers,and a natural organic polymer alginate(ALG),to establish a sustained drug delivery system for the poorly water-soluble drug Indomethacin(IND).Mesoporous silica nanospheres(MSNs)were synthesized using an organic template method and then functionalized with aminopropyl groups through postsynthesis.After drug loading into the pores of aninopropyl functionalized MSNs(AP-MSNs),IND loaded AP-MSNs(IND-AP-MSNs)were encapsulated by ALG through the ionic interaction.The effects of surface chemical groups and ALG layer on IND release were systematically studied using scanning electron microscopy(SEM),transmission electron microscopy(TEM),nitrogen adsorption,zetapotential analysis and TGA analysis.The surface structure and surface charge changes of the ALG encapsulated AP-MSNs(ALG-AP-MSNs)were also investigated.The results showed that sustained release of IND from the designed drug delivery system was mainly due to the blockage effect from the coated ALG.We believe that this combination will help designing oral sustained drug delivery systems for poorly water-soluble drugs.展开更多
基金supported by research grants from the National Key R&D Program(2019YFD0902003)。
文摘Specific and sustained release of nutrients from capsules to the gastrointestinal tract has attracted many attentions in the field of food and drug delivery.In this work,we reported a monoaxial dispersion electrospraying-ionotropic gelation technique to prepare multicore millimeter-sized spherical capsules for specific and sustained release of fish oil.The spherical capsules had diameters from 2.05 mm to 0.35 mm with the increased applied voltages.The capsules consisted of uniform(at applied voltages of≤10 k V)or nonuniform(at applied voltages of>10 k V)multicores.The obtained capsules had reasonable loading ratios(9.7%-6.3%)due to the multicore structure.In addition,the obtained capsules had specific and sustained release behaviors of fish oil into the small intestinal phase of in vitro gastrointestinal tract and small intestinal tract models.The simple monoaxial dispersion electrospraying-ionotropic gelatin technique does not involve complicated preparation formulations and polymer modification,which makes the technique has a potential application prospect for the fish oil preparations and the encapsulation of functional active substances in the field of food and drug industries.
基金supported by the Guangdong Provincial Science and Technology Project(No.2015B020215012)State Key Laboratory of Woody Oil Resource Utilization,Co-Built by Provincial and Ministry of China(No.GZKF202108)National Natural Science Foundation of China(32101475).
文摘The low utilization rate of pesticides makes the migration of pesticides in water and soil,which brings great harm to the ecosystem.The development of pesticide carriers with good drug loading capacity and release control abil-ity is an effective method to realize effective utilization of pesticides and reduce pesticide losses.In this work,fosthiazate-stearic acid/expanded perlite sustained-release particles were successfully prepared by vacuum impregnation using expanded perlite(EP)as carrier,fosthiazate(FOS)as model pesticide and stearic acid(SA)as hydrophobic matrix.The structure and morphology of the samples were studied by BET,FT-IR,TGA,XRD,DSC and SEM.The effects of different mass ratios of FOS to SA on loading capacity and release rate at 24 h were investigated.The sustained release behavior of FOS-SA/EP at different temperatures and pH values was investigated by static dialysis bag method.The results showed that FOS and SA were adsorbed in EP pores by physical interaction.With the mass ratios of FOS to SA decreasing from 7:3 to 3:7,the 24 h release rate of FOS-SA/EP decreased from 18.77%to 8.05%,and the drug loading decreased from 461.32 to 130.99 mg/g.FOS-SA/EP showed obvious temperature response at 25℃,30℃ and 35℃,the cumulative release rate(CRR)of 200 h were 33.38%,41.50%and 51.17%,respectively.When pH=5,the CRR of FOS was higher than that of pH=7,and the CRR of FOS for 200 h were 49.01%and 30.12%,respectively.At different temperatures and pH=5,the release mechanism of FOS-SA/EP belongs to the Fickian diffusion mechanism;When pH=7,the diffusion mechanism is dominant,and the dissolution mechanism is complementary.
基金Supported by National Natural Science Foundation of China(81560659)Science and Technology Research Project of Jiangxi Provincial Department of Education(GJJ201219,GJJ2200903)+1 种基金National College Students Innovation and Entrepreneurship Training Program(202210412022)Science and Technology Plan of Jiangxi Provincial Health Commission(202211411).
文摘[Objectives] To study the coating process of paeonol sustained release pills by extrusion-spheronization method taking ethyl cellulose as the coating material. [Methods] Paeonol pills were made by Auari AW-95 Full Automatic Pill Making Machine. Coating of paeonol sustained release pills was prepared by Auari Mini Pill Polishing Machine. The prescription and process factors of paeonol sustained release pills coating were investigated by single factor experiment and orthogonal experiment. The release of paeonol sustained release pills was determined according to the cumulative release curve of paeonol. [Results] The prepared paeonol sustained release pills released slowly within 24 h, and the release rate reached 80% in 12 h. [Conclusions] The prepared paeonol sustained release pills basically meet the 24 h sustained release standard, and can be further developed and applied.
文摘Aim To prepare the sustained release melatonin tablet with HPMC matrix and study its pharmacokinetics and bioavailatility. Methods HPMC was used as matrix to formulate the sustained release tablet. The influences of the size of melatonin, type and amount of HPMC, drug loading, type and amount of additives, and compressing pressure were investigated. Plasma concentration of melatonin in dogs after intravenous injection of two doses and oral administration of sustained release tablets and unmodified release capsules was detected by HPLC using fluorescence detector. Results The drug release from sustained release tablets was influenced by the size of melatonin, type and amount of HPMC, drug loading, and type and amount of additives. Melatonin was found to fit two compartment model after intravenous injection, AUC was proportional to doses, and t(1/2β) of two doses has no significant difference. Relative bioavailability of melatonin sustained release tablet to normal capsule was 83.8%, and absolute bioavailability was 3.75% for sustained release tablet and 4.49% for capsule. Conclusion The melatonin sustained release tablet was well formulated. The absolute bioavilability for oral administration of either sustained release tablet or unmodified release capsule of melatonin was less than 5%. The bioavailability of melatonin sustained release tablet was lower than that of unmodified release capsule, but MRT of sustained release tablet was significantly longer than that of capsule.
基金Funded by the Scientific Research Project of Shanghai Municipal Health Commission(No.201940430)。
文摘Our previous studies have successfully grafted biotin and galactose onto chitosan(CS)and synthesized biotin modified galactosylated chitosan(Bio-GC).The optimum N/P ratio of Bio-GC and plasmid DNA was 3:1.At this N/P ratio,the transfection efficiency in the hepatoma cells was the highest with a slow release effect.Bio-GC nanomaterials exhibit the protective effect of preventing the gene from nuclease degradation,and can target the transfection into hepatoma cells by combination with galactose and biotin receptors.The transfection rate was inhibited by the competition of galactose and biotin.Bio-GC nanomaterials were imported into cells’cytoplasm by their receptors,followed by the imported exogenous gene transfected into the cells.Bio-GC nanomaterials can also cause inhibitory activity in the hepatoma cells in the model of orthotopic liver transplantation in mice,by carrying the gene through the blood to the hepatoma tissue.Taken together,bio-GC nanomaterials act as gene vectors with the activity of protecting the gene from DNase degradation,improving the rate of transfection in hepatoma cells,and transporting the gene into the cytoplasm in vitro and in vivo.Therefore,they are efficient hepatoma-targeting gene carriers.
基金funded by the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(No.820LH027)the Hainan Provincial Natural Science Foundation of China(No.823RC472)+1 种基金the Open Project Program of Wuhan National Laboratory for Optoelectronics(No.2021WNLOKF008)the Hainan University Scientific Research Foundation(KYQD(ZR)19107).
文摘Monomethyl auristatin E(MMAE)is a derivative of the marine peptide Dolastatin 10,which has therapeutic effects against various cancers according to its antimitotic activity in multiple clinical trials.The antibody drug conjugate(ADC)of MMAE is currently used in clinical practice.However,the safety issues of MMAE-based ADC,such as high drug toxicity and poor bioavailability,still exist when using it for anticancer therapy.A sustained release of drug delivery approach should be used to reduce toxicity and achieve sufficient anticancer effects.Herein,PLGA-b-PEG 2000 with excellent biocompatibility and slow degradation ability was adopted to construct MMAE-loaded nanoparticles for safe and effective chemotherapy.The sustained release effect and the immunogenic cell death(ICD)effect of PLGA-MMAE nanoparticles were assessed by in vitro experiments.The PLGA-MMAE nanoparticles effectively accumulated in the tumor through the enhanced permeability and retention(EPR)effect,inducing cell apoptosis and causing a certain degree of immune response.The sustained drug release of PLGA-MMAE improved the bioavailability and effectively reduced the toxicity and development of the tumor compared to the effect of free MMAE or ADC.Overall,this study provides a safe and effective chemotherapeutic approach,as well as a simple and effective synthetic process for MMAE-based nanoparticles,improving their therapeutic efficacy and safety.
基金supported by the Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology(2023yjrc51)the National Natural Science Foundation of China(22172184)+2 种基金the Foundation of State Key Laboratory of Coal Conversion(J24-25-603)the Fundamental Research Project of ICC-CAS(SCJC-DT-2023-01)Weiqiao-UCAS Special Projects on Low-Carbon Technology Development(GYY-DTFZ-2022-015)。
文摘This study explores the controllable synthesis of CuAlO_(2) using copper hydroxide and pseudo-boehmite powders as raw materials via a simple solid-phase ball milling method,along with its catalytic performance investigation in methanol steam reforming(MSR).Various catalysts were prepared under different conditions,such as calcination temperature,calcination atmosphere,and heating rate.Characterization techniques including BET,XRD,XPS,SEM and H2-TPR were employed to analyze the samples.The results revealed significant effects of calcination temperature on the phase compositions,specific surface area,reduction performance,and surface properties of the CA-T catalysts.Based on the findings,a synthesis route of CuAlO_(2) via the solid-phase method was proposed,highlighting the importance of high calcination temperature,nitrogen atmosphere,and low heating rate for CuAlO_(2) formation.Catalytic evaluation data demonstrated that CuAlO_(2) could catalyze MSR without pre-reduction,with the catalytic performance of CA-T catalysts being notably influenced by calcination temperature.Among the prepared catalysts,the CA-1100 catalyst exhibited the highest catalytic activity and stability.The findings of this study might be useful for the further study of the catalytic material for sustained release catalysis,including the synthesis of catalytic materials and the regulation of sustained release catalytic performance.
文摘To investigate the pharmacokinetic characteristics of moclobemide sustainedrelease tablets after multiple oral dose administration in healthy Chinese volunteers. MethodsMoclobemide sustained release tablets were given as a multiple oral dose regimen of 300 mg oncedaily for five consecutive days to 12 healthy volunteers. The concentrations of moclobemide inplasma were determined by reversed-phase high performance liquid chromatography. The partialpharmacokinetic parameters were calculated using 3p97 pharmacokinetic program. Results Theconcentration-time profile fitted an one-compartment model best. The steady-state pharmacokineticparameters of moclobemide sustained release tablets after multiple oral doses were as follows:C_(max) was (1 950 +- 156) μg· L^(-1), T_(max) was (6.00 +-1.55) h, T_(1/2(kel)) was (3.14 +-0.12)h, AUC_(ss 0-24) was (22 836 +- 1 842) μg·h· L^(-1), MRT was (7.68+-0.36) h, CL/F_((s)) was(20.2+-2.1) L·h^(-1), and V/F_((c)) was (91.4+-9.4) L, respectively. No marked adverse events werenoted during this study. Conclusion The formulation has a sustained-release effect and goodtolerance in the healthy volunteers, which provides useful information for clinical practice.
文摘Sustained release Eudragit RL/RS microspheres encapsulating nifedipine were prepared using the acetone/liquid paraffin emulsion solvent evaporation method. The influence of different preparation factors on release of the drug in vitro was investigated. The release rate of nifedipine from the microspheres increased with increasing Eudragit RL/RS ratio and stirring rate during the preparation, and with decreasing the polymer concentration of internal phase and microsphere size. It was found that a linear relationship existed between the microsphere size and the time of 50% drug release. The drug release rate increased with increasing nifedipine content from 4.2 to 16.7% and was more rapid than the dissolution rate of pure nifedipine particles. However, the release rate of the microspheres with 26.6% drug content decreased significantly and was slower than the dissolution rate of pure drug particles. This was attributed mainly to the nifedipine dispersion state in the microspheres as confirmed by the differential thermal analysis and X ray diffraction study, which showed that nifedipine was present in an amorphous or molecular state in the microspheres with 4.2, 9.4 and 16.7% drug, whereas partly in the crystalline state in the microspheres with 26.6% drug. The amounts released for less than 70% nifedipine can be fitted to Higuchi square root of time model, independent of polymer ratio, drug content and microsphere size.
基金supported by the National Natural Science Foundation of China,Nos.31771322,31571235the National Science Foundation of Beijing,No.7212121+3 种基金Beijing Science Technology New Star Cross Subject,No.2018019Science and Technology Plan Project of Shenzhen,No.JCYJ 20190806162205278the Key Laboratory of Trauma and Neural Regeneration(Peking University),Ministry of Educationa grant from National Center for Trauma Medicine,No.BMU2020XY005-01(all to PXZ).
文摘Exosomes derived from mesenchymal stem cells are of therapeutic interest because of their important role in intracellular communication and biological regulation.On the basis of previously studied nerve conduits,we designed a polydopamine-modified chitin conduit loaded with mesenchymal stem cell-derived exosomes that release the exosomes in a sustained and stable manner.In vitro experiments revealed that rat mesenchymal stem cell-derived exosomes enhanced Schwann cell proliferation and secretion of neurotrophic and growth factors,increased the expression of Jun and Sox2 genes,decreased the expression of Mbp and Krox20 genes in Schwann cells,and reprogrammed Schwann cells to a repair phenotype.Furthermore,mesenchymal stem cell-derived exosomes promoted neurite growth of dorsal root ganglia.The polydopamine-modified chitin conduits loaded with mesenchymal stem cell-derived exosomes were used to bridge 2 mm rat sciatic nerve defects.Sustained release of exosomes greatly accelerated nerve healing and improved nerve function.These findings confirm that sustained release of mesenchymal stem cell-derived exosomes loaded into polydopamine-modified chitin conduits promotes the functional recovery of injured peripheral nerves.
基金the China Postdoctoral Science Foundation(Grant No.2016M602442)the Science and Technology Plan Projects of Guangdong Province(Grant No.2015B020232010)+1 种基金the 111 project(Grant No.B16047)the Natural Science Fund Project of Guangdong Province(Grant No.2018A030310555,Grant No.2016A030312013)。
文摘This study aimed to prepare poly(D, L-lactic-co-glycolic acid) microspheres(PLGA-Ms)by a modified solid-in-oil-in-water(S/O/W) multi-emulsion technique in order to achieve sustained release with reduced initial burst and maintain efficient drug concentration for a prolonged period of time. Composite PLGA microspheres containing exenatideencapsulated lecithin nanoparticles(Ex-NPs-PLGA-Ms) were obtained by initial fabrication of exenatide-loaded lecithin nanoparticles(Ex-NPs) via the alcohol injection method,followed by encapsulation of Ex-NPs into PLGA microspheres. Compared to Ms prepared by the conventional water-in-oil-in-water(W/O/W) technique(Ex-PLGA-Ms), Ex-NPs-PLGAMs showed a more uniform particle size distribution, reduced initial burst release, and sustained release for over 60 d in vitro. Cytotoxicity studies showed that Ms prepared by both techniques had superior biocompatibility without causing any detectable cytotoxicity.In pharmacokinetic studies, the effective drug concentration was maintained for over 30 d following a single subcutaneous injection of two types of Ms formulation in rats, potentially prolonging the therapeutic action of Ex. In addition, administration of Ex-NPs-PLGA-Ms resulted in a more smooth plasma concentration-time profile with a higher area under the curve(AUC) compared to that of Ex-PLGA-Ms. Overall, Ex-NPs-PLGA-Ms prepared by the novel S/O/W method could be a promising sustained drug release system with reduced initial burst release and prolonged therapeutic efficacy.
基金supported by the National Natural Science Foundation of China(51472101,51572114,21773062,21577036)the Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials(JSKC17003)~~
文摘Silver nanoparticles (Ag NPs) can effectively address the issue of antibiotic-resistant bacterial infections to reduce the potential toxicity of Ag NPs. Although challenging, it is, therefore, necessary to achieve the sustainable release of Ag+ ions from a finite amount of Ag NPs. This study aims at designing an efficient and benign antimicrobial silver-based ternary composite composed of photocatalysis zinc oxide (ZnO) and reduced graphene oxide (rGO) as a carrier, in which the reactive oxygen species (ROS) excited from ZnO and Ag+ ions released from the Ag NPs cooperate to realize an effective antibacterial activity against E. coli and S. aureus. The constant effective bacterial performance of the ternary photocatalyst with minimum Ag content can be attributed to the increase in the available quantity of ROS, which results from the enhanced separation efficiency of the photogenerated carriers. The proposed system notably realized the long-term sustainable release of Ag+ ions with low concentration for 30 days when compared with an equivalent amount of silver nitrate. Moreover, the use of the composite prevents biotoxicity and silver wastage, and imparts enhanced stability to the long-lasting antibacterial efficacy.
文摘The purpose of this study was to develop a PLGA microspheres-based donepezil(DP)formulation which was expected to sustain release of DP for one week with high encapsulation efficiency(EE).DP derived from donepezil hydrochloride was encapsulated in PLGA microspheres by the O/W emulsion-solvent evaporation method.The optimized formulation which avoided the crushing of microspheres during the preparation process was characterized in terms of particle size,morphology,drug loading and EE,physical state of DP in the matrix and in vitro and in vivo release behavior.DP microspheres were prepared successfully with average diameter of 30m,drug loading of 15.92±0.31%and EE up to 78.79±2.56%.Scanning electron microscope image showed it has integrated spherical shape with no drug crystal and porous on its surface.Differential scanning calorimetry and X-ray diffraction results suggested DP was in amorphous state or molecularly dispersed in microspheres.The Tg of PLGA was increased with the addition of DP.The release profile in vitro was characterized with slow but continuous release that lasted for about one week and fitted well with first-order model,which suggested the diffusion governing release mechanism.After single-dose administration of DP microspheres via subcutaneous injection in rats,the plasma concentration of DP reached peak concentration at 0.50 d,and then declined gradually,but was still detectable at 15 d.A good correlation between in vitro and in vivo data was obtained.The results suggest the potential use of DP microspheres for treatment of Alzheimer’s disease over long periods.
文摘Coated microneedles(MNs) are widely used for delivering biopharmaceuticals. In this study, a novel gel encapsulated coated MNs(GEC-MNs) was developed. The water-soluble drug coating was encapsulated with sodium alginate(SA) in situ complexation gel. The manufacturing process of GEC-MNs was optimized for mass production. Compared to the water-soluble coated MNs(72.02% ± 11.49%), the drug delivery efficiency of the optimized GEC-MNs(88.42% ± 6.72%) was steadily increased, and this improvement was investigated through in vitro drug release. The sustained-release of BSA was observed in vitro permeation through the skin. The rhIFN α-1 b GEC-MNs was confirmed to achieve biosafety and 6-month storage stability. Pharmacokinetics of rhIFN α-1 b in GEC-MNs showed a linearly dosedependent relationship. The AUC of rhIFN α-1 b in GEC-MNs(4.51 ng/ml ·h) was bioequivalent to the intradermal(ID) injection(5.36 ng/ml ·h) and significantly higher than water-soluble coated MNs(3.12 ng/ml ·h). The rhIFN α-1 b elimination half-life of GEC-MNs, soluble coated MNs, and ID injection was 18.16, 1.44, and 2.53 h, respectively. The complexation-based GECMNs have proved to be more efficient, stable, and achieve the sustained-release of watersoluble drug in coating MNs, constituting a high value to biopharmaceutical.
基金support From the Open Fund Project of Key Lab.of Biomass Energy and Material,Jiangsu Province(JSBEM201907)the Ordinary University Young Innovative Talents Project of Guangdong Province(2018KQNCX119).
文摘Environmental cleaning is an important aspect of bacteria control.Ethyl cellulose microcapsules containing potassium monopersulfate(PMCM)were prepared by emulsified solvent diffusion method.The chemical structure and microstructure of the obtained PMCM was characterized by methods of Fourier transform infrared spectroscopy(FT-IR),optical microscopy,scanning electron microscopy and X-ACT energy dispersive X-ray spectroscopy.The SEM micrographs of the PMCM containing 21.6%of C,46.8%of O,10.7%of S and 19.4%of K was relatively smooth.Thermal stability,sustained release performance,and antimicrobial activity of PMCM were investigated.The results showed that the drug loading and encapsulation efficiency of PMCM were 30.3%and 42.6%respectively.Potassium monopersulfate was fully released after 8 h,following a Fickian diffusion mechanism.Results showed that the microcapsules prepared with a high concentration of potassium monopersulfate solution showed a good antimicrobial effect.The microcapsule wall of the resulting PMCM increased with increasing ethyl cellulose content and had high thermal stability from the data of 69%residue rate.The excellent thermal stability and high sustained release performance of PMCM showed high application value.
基金financial support from the National Natural Science Foundation of China (32071342 and 31922042)Guangdong Special Support Program (2019TQ05Y209)the Fundamental Research Funds for the Central Universities (19ykzd31)。
文摘Parenteral sustained release drug formulations, acting as preferable platforms for longterm exposure therapy, have been wildly used in clinical practice. However, most of these delivery systems must be given by hypodermic injection. Therefore, issues including needle-phobic, needle-stick injuries and inappropriate reuse of needles would hamper the further applications of these delivery platforms. Microneedles (MNs) as a potential alternative system for hypodermic needles can benefit from minimally invasive and self-administration. Recently, polymeric microneedle-mediated sustained release systems (MN@SRS) have opened up a new way for treatment of many diseases. Here, we reviewed the recent researches in MN@SRS for transdermal delivery, and summed up its typical design strategies and applications in various diseases therapy, particularly focusing on the applications in contraception, infection, cancer, diabetes, and subcutaneous disease. An overview of the present clinical translation difficulties and future outlook of MN@SRS was also provided.
文摘In this study,diltiazem hydrochloride(DTZ)pellets were prepared successfully by extrusionespheronization method.Then methacrylic acid and ethylcellulose coating formulations were employed to make the DTZ pellets sustained release.The pellets with different coatings were investigated by in vitro dissolution tests.At last,the pellets with the best coating copolymer were subjected to pharmacokinetic studies in beagle dogs.The dissolution profiles of pellets coated with EudragitNE30D were similar to Herbesser,one of the marketed sustained release capsules.In the bioavailability study,the principal pharmacokinetic parameters of self-made pellets and the marketed ones were comparable;the relative bioavailability of DTZ sustained release capsules compared with Herbesserwas 98.536.4%.All the data indicated self-made sustained pellets could prolong the release of DTZ,decrease the fluctuation of drug level in vivo,and increase the compliance of patients.
文摘The captopril/Chitosan-gelatin net-polymer microspheres(CTP/CGNPMs) were prepared using Chitosan(CTS) and gelatin(GT) by the methods of emulsification,cross-linked reagent alone or in combination and microcrystalline cellulose(MCC) added in the process of preparation of microspheres,which aimed to eliminate dose dumping and burst phenomenon of microspheres for the improvement of the therapeutic efficiency and the decrease of the side effects of captopril(CTP). The results indicated that CTP/CGNPMs had a spherical shape,smooth surface and integral structure inside but no adhesive phenomena in the preparation. The size distribution ranged from 220 μm to 280 μm. The CTP release test in vitro demonstrated that CTP/CGNPMs played the role of retarding the release of CTP compared with ordinary CTP tablets. The release behaviors of CGNPMS were influenced by preparation conditions such as experimental material ratio(EMR) and composition of cross linking reagents. Among these factors,the EMR(1/4),CLR(FA+SPP) and 0.75% microcrystalline cellulose(MCC) added to the microspheres constituted the optimal scheme for the preparation of CTP/CGNPMs. The ER,DL and SR of CTP/CGNPMs prepared according to the optimal scheme were 46.23±4.51%,9.95±0.77% and 261±42%,respectively. The CTP/CGNPMs had the good characteristics of sustained release of drug and the process of emulsification and cross-linking were simple and stable. The CGNPMs are likely to be an ideal sustained release formulation for water-soluble drugs.
基金This work was supported by National Basic Research Program of China(973 Program)(2009CB930300)National Natural Science Foundation of China(81072605)Shenyang Special Fund for Exploration of Intellectual Resources.
文摘We applied a combination of inorganic mesoporous silica material,frequently used as drug carriers,and a natural organic polymer alginate(ALG),to establish a sustained drug delivery system for the poorly water-soluble drug Indomethacin(IND).Mesoporous silica nanospheres(MSNs)were synthesized using an organic template method and then functionalized with aminopropyl groups through postsynthesis.After drug loading into the pores of aninopropyl functionalized MSNs(AP-MSNs),IND loaded AP-MSNs(IND-AP-MSNs)were encapsulated by ALG through the ionic interaction.The effects of surface chemical groups and ALG layer on IND release were systematically studied using scanning electron microscopy(SEM),transmission electron microscopy(TEM),nitrogen adsorption,zetapotential analysis and TGA analysis.The surface structure and surface charge changes of the ALG encapsulated AP-MSNs(ALG-AP-MSNs)were also investigated.The results showed that sustained release of IND from the designed drug delivery system was mainly due to the blockage effect from the coated ALG.We believe that this combination will help designing oral sustained drug delivery systems for poorly water-soluble drugs.