Let H2 be Sweedler's 4-dimensional Hopf algebra and r(H2) be the corresponding Green ring of H2. In this paper, we investigate the automorphism groups of Green ring r(H2) and Green algebra F(H2) = r(H2) zF, ...Let H2 be Sweedler's 4-dimensional Hopf algebra and r(H2) be the corresponding Green ring of H2. In this paper, we investigate the automorphism groups of Green ring r(H2) and Green algebra F(H2) = r(H2) zF, where F is a field, whose characteristics is not equal to 2. We prove that the automorphism group of r(H2) is isomorphic to K4, where K4 is the Klein group, and the automorphism group of F(H2) is the semidirect product of Z2 and G, where G = F / {1/2} with multiplication given by a. b = 1 - a - b + 2ab.展开更多
We obtain the necessary and sufficient conditions for Radford's biproduct to be a braided Hopf algebra. As an application, a nontrivial example is given.
The authors present the general theory of cleft extensions for a cocommutative weak Hopf algebra H. For a right H-comodule algebra, they obtain a bijective corre- spondence between the isomorphisms classes of H-cleft ...The authors present the general theory of cleft extensions for a cocommutative weak Hopf algebra H. For a right H-comodule algebra, they obtain a bijective corre- spondence between the isomorphisms classes of H-cleft extensions AH → A, where AH is the subalgebra of coinvariants, and the equivalence classes of crossed systems for H over AH. Finally, they establish a bijection between the set of equivalence classes of crossed systems with a fixed weak H-module algebra structure and the second cohomology group H2φZ(AH) (H, Z(AH)), where Z(AH) is the center of AH.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant No. 11471282).
文摘Let H2 be Sweedler's 4-dimensional Hopf algebra and r(H2) be the corresponding Green ring of H2. In this paper, we investigate the automorphism groups of Green ring r(H2) and Green algebra F(H2) = r(H2) zF, where F is a field, whose characteristics is not equal to 2. We prove that the automorphism group of r(H2) is isomorphic to K4, where K4 is the Klein group, and the automorphism group of F(H2) is the semidirect product of Z2 and G, where G = F / {1/2} with multiplication given by a. b = 1 - a - b + 2ab.
基金Supported by the NNSF of China (10871042)the NSF of Jiangsu Province (BK2009258)+1 种基金NSF of Henan Province (102300410049, 2010A110009)the Foster Foundation of Henan Normal University (2010PL01)
文摘We obtain the necessary and sufficient conditions for Radford's biproduct to be a braided Hopf algebra. As an application, a nontrivial example is given.
基金supported by the project of Ministerio de Ciencia e Innovación(No.MTM2010-15634)Fondo Europeo de Desarrollo Regional
文摘The authors present the general theory of cleft extensions for a cocommutative weak Hopf algebra H. For a right H-comodule algebra, they obtain a bijective corre- spondence between the isomorphisms classes of H-cleft extensions AH → A, where AH is the subalgebra of coinvariants, and the equivalence classes of crossed systems for H over AH. Finally, they establish a bijection between the set of equivalence classes of crossed systems with a fixed weak H-module algebra structure and the second cohomology group H2φZ(AH) (H, Z(AH)), where Z(AH) is the center of AH.