Compared to other melon types, oriental sweet melon (Cucumis melo var. makuwa Makino) is quite a different species with a shorter shelf-life due to its typical climacteric behavior and thin pericarp. The purpose of ...Compared to other melon types, oriental sweet melon (Cucumis melo var. makuwa Makino) is quite a different species with a shorter shelf-life due to its typical climacteric behavior and thin pericarp. The purpose of this experiment is to explore the effects of co- treatment of enhanced freshness formulation (EFF) and 1-methylcyclopropene (1-MCP) on physiological changes and the content of aroma volatile compounds introduced by them of two oriental sweet melon cultivars (Yumeiren and Tianbao) during storage. The melons were stored in incubators with temperature of 15~C and a relative humidity of 85% for 24 d during which fruit quality and related physiological index were measured. Compared to the control, both treatments delayed fruit weight loss rate and kept the fruit firmness, water content and soluble solids content. Ascorbate peroxidase (APX) and phenylalanine ammonia lyase (PAL) activities showed fluctuations in treated melons, while lipoxygenase (LOX) activity (P〈0.01) and malondialdehyde (MDA) content (P〈0.05) decreased compared to control. During the early stage of storage, alcohols and aldehydes were the main volatile compounds, and esters gradually increased during storage. Of all the esters, acetic esters were the main components, followed by oxalic acid esters and other esters. The total content of aroma volatile compounds, esters, alcohols and aldehydes of co-treated melons were all higher than those of 1-MCP treated and control melons. In addition, the aroma volatile peak of co-treated melons occurred later than that of 1-MCP treated and control melons. In summary, co-treatment of EFF and 1-MCP was more beneficial than 1-MCP treatment to delay ripening and senescence, maintain fruit quality, enhance shelf-life and improve levels of aroma volatile compounds.展开更多
The main purpose of this study was to investigate the effect of different lactic acid bacteria and yeast strains on the volatile composition of fermented sweet melon juice.Headspace gas chromatography-ion mobility spe...The main purpose of this study was to investigate the effect of different lactic acid bacteria and yeast strains on the volatile composition of fermented sweet melon juice.Headspace gas chromatography-ion mobility spectrometry(HS-GC-IMS)coupled with chemometrics was performed to identify the potential volatiles for the discrimination of different fermented sweet melon juice.In total,70 volatile compounds were found in the fermented sweet melon juices.Of them,45 compounds were annotated according to the GC-IMS database and classified into esters,alcohols,aldehydes,ketones and furans.Results from the multivariate analysis reveal that sweet melon juice fermented by different combinations of microbial strains could be distinctly separated from each other.A total of 15 volatiles with both variable importance in projection value>1 and P<0.05 were determined as potential markers for the discrimination of fermented sweet melon juice.This study confirms the effect of microorganisms on the flavor of the fermented sweet melon juice and shows the potential of HS-GC-IMS combined with chemometrics as a powerful strategy to obtain volatile fingerprints of different fermented sweet melon juice.展开更多
Watermelon research in Southern Africa, has predominantly observed the clear existence of the sweet watermelon and cow melon forms of watermelon, cultivated on farm and even some occurring in the wild. Molecular chara...Watermelon research in Southern Africa, has predominantly observed the clear existence of the sweet watermelon and cow melon forms of watermelon, cultivated on farm and even some occurring in the wild. Molecular characterization of 48 watermelon accessions collected from National Genebank of Zimbabwe using 9 SSR markers generated a total of 49 putative alleles. The average number of alleles detected by each primer was 5.4. Analysis of molecular variance within and among accessions of watermelons revealed that only 39% of the total variation resides between these two groups (cow-melons and sweet watermelons), 24% between accession within groups and 37% within accessions. Multivariate analyses employed provide evidence of the existence of introgression between sweet water melons and cow melons, as reflected by some accessions of cow melons, clustering into a hybridogenous group. Most of watermelon accessions within the hybridogenous group [A (II)] were collected from drier communal areas, while those accessions within the cow melon group [A (I)] are mostly from research centers. The separation of cow melons into distinct groups could be indicative of a possible formation of an isolated evolutionary unit.展开更多
甜瓜是我国,也是世界上最重要的夏令水果之一。甜瓜果实内所含碳水化合物的种类和数量很大程度上决定其品质和产量。SWEET(sugars will eventually be exported transporters)糖转运蛋白具有运输葡萄糖和其他寡糖的功能,最近研究表明,SW...甜瓜是我国,也是世界上最重要的夏令水果之一。甜瓜果实内所含碳水化合物的种类和数量很大程度上决定其品质和产量。SWEET(sugars will eventually be exported transporters)糖转运蛋白具有运输葡萄糖和其他寡糖的功能,最近研究表明,SWEET糖转运蛋白在果实发育中可能起调控作用。本研究从甜瓜基因组中鉴定获得18个SWEETs糖转运蛋白基因,进一步通过RT-PCR并结合实时荧光定量PCR(quantitative real-time PCR,qPCR)方法,筛选到3个SWEETs基因在整个果实发育期内或某个发育时期表达量较高。亚细胞定位显示,两个SWEETs基因(CmSWEET3,CmSWEET7a)定位在细胞膜上。进一步通过酵母表达发现,甜瓜CmSWEET7a在体外具有转运葡萄糖和果糖的功能。本研究为揭示SWEET糖转运蛋白在甜瓜果实发育过程的调控作用奠定了基础。展开更多
Fifteen expressed sequence tag (EST)-derived simple sequence repeats (EST-SSRs) were used to investigate genetic diversity in 139 plants obtained from seeds of 35 watermelon accessions collected from all the geographi...Fifteen expressed sequence tag (EST)-derived simple sequence repeats (EST-SSRs) were used to investigate genetic diversity in 139 plants obtained from seeds of 35 watermelon accessions collected from all the geographical provinces of Zimbabwe. In addition, 15 plants representing three commercial varieties developed in the United States (USA) were analyzed for comparison. A total of 65 alleles were detected among all the watermelon accessions. For the 13 polymorphic EST-SSR loci, number of alleles per locus varied from 2 to 13, with an average of 5 alleles per locus. Values for the polymorphic information content increased as the number of alleles increased, and varied from 0.15 to 0.77 with an average of 0.54 suggesting sufficient discriminatory power. Both cluster analysis and principal coordinate analysis (PCA) produced two major clusters;one with the 22 cow-melon accessions and the other with the 16 sweet watermelon accessions. Within the sweet watermelon group, two distinct sub-clusters formed, one of which contained only two of the commercial varieties from USA. Partitioning of genetic variation in the Zimbabwean material using analysis of molecular variation (AMOVA) revealed that 64% of the total variation resides between the two major forms, i.e. sweet watermelons and cow-melons, 28% between accessions within forms and 8% within accessions. The EST-SSR markers revealed a somewhat higher diversity in sweet watermelon accessions compared to that of cow-melons. This finding is contrary to previous reports using other markers (genomic SSR loci or RAPD) and/or a plant material that is likely to have experienced more stringent selection procedures compared to the landraces analyzed in our study.展开更多
基金financially supported by the Key Project of Liaoning Province(2011215003)the Project of the Science and Technology Bureau of Shenyang,China(F12-277-1-26)
文摘Compared to other melon types, oriental sweet melon (Cucumis melo var. makuwa Makino) is quite a different species with a shorter shelf-life due to its typical climacteric behavior and thin pericarp. The purpose of this experiment is to explore the effects of co- treatment of enhanced freshness formulation (EFF) and 1-methylcyclopropene (1-MCP) on physiological changes and the content of aroma volatile compounds introduced by them of two oriental sweet melon cultivars (Yumeiren and Tianbao) during storage. The melons were stored in incubators with temperature of 15~C and a relative humidity of 85% for 24 d during which fruit quality and related physiological index were measured. Compared to the control, both treatments delayed fruit weight loss rate and kept the fruit firmness, water content and soluble solids content. Ascorbate peroxidase (APX) and phenylalanine ammonia lyase (PAL) activities showed fluctuations in treated melons, while lipoxygenase (LOX) activity (P〈0.01) and malondialdehyde (MDA) content (P〈0.05) decreased compared to control. During the early stage of storage, alcohols and aldehydes were the main volatile compounds, and esters gradually increased during storage. Of all the esters, acetic esters were the main components, followed by oxalic acid esters and other esters. The total content of aroma volatile compounds, esters, alcohols and aldehydes of co-treated melons were all higher than those of 1-MCP treated and control melons. In addition, the aroma volatile peak of co-treated melons occurred later than that of 1-MCP treated and control melons. In summary, co-treatment of EFF and 1-MCP was more beneficial than 1-MCP treatment to delay ripening and senescence, maintain fruit quality, enhance shelf-life and improve levels of aroma volatile compounds.
基金supported by Hebei Provincial Key Research Projects(19227114D)the Vegetable Industry Innovation Team Project of Hebei Modern Agricultural Industrial Technology System(HBCT2018030208).
文摘The main purpose of this study was to investigate the effect of different lactic acid bacteria and yeast strains on the volatile composition of fermented sweet melon juice.Headspace gas chromatography-ion mobility spectrometry(HS-GC-IMS)coupled with chemometrics was performed to identify the potential volatiles for the discrimination of different fermented sweet melon juice.In total,70 volatile compounds were found in the fermented sweet melon juices.Of them,45 compounds were annotated according to the GC-IMS database and classified into esters,alcohols,aldehydes,ketones and furans.Results from the multivariate analysis reveal that sweet melon juice fermented by different combinations of microbial strains could be distinctly separated from each other.A total of 15 volatiles with both variable importance in projection value>1 and P<0.05 were determined as potential markers for the discrimination of fermented sweet melon juice.This study confirms the effect of microorganisms on the flavor of the fermented sweet melon juice and shows the potential of HS-GC-IMS combined with chemometrics as a powerful strategy to obtain volatile fingerprints of different fermented sweet melon juice.
文摘Watermelon research in Southern Africa, has predominantly observed the clear existence of the sweet watermelon and cow melon forms of watermelon, cultivated on farm and even some occurring in the wild. Molecular characterization of 48 watermelon accessions collected from National Genebank of Zimbabwe using 9 SSR markers generated a total of 49 putative alleles. The average number of alleles detected by each primer was 5.4. Analysis of molecular variance within and among accessions of watermelons revealed that only 39% of the total variation resides between these two groups (cow-melons and sweet watermelons), 24% between accession within groups and 37% within accessions. Multivariate analyses employed provide evidence of the existence of introgression between sweet water melons and cow melons, as reflected by some accessions of cow melons, clustering into a hybridogenous group. Most of watermelon accessions within the hybridogenous group [A (II)] were collected from drier communal areas, while those accessions within the cow melon group [A (I)] are mostly from research centers. The separation of cow melons into distinct groups could be indicative of a possible formation of an isolated evolutionary unit.
文摘甜瓜是我国,也是世界上最重要的夏令水果之一。甜瓜果实内所含碳水化合物的种类和数量很大程度上决定其品质和产量。SWEET(sugars will eventually be exported transporters)糖转运蛋白具有运输葡萄糖和其他寡糖的功能,最近研究表明,SWEET糖转运蛋白在果实发育中可能起调控作用。本研究从甜瓜基因组中鉴定获得18个SWEETs糖转运蛋白基因,进一步通过RT-PCR并结合实时荧光定量PCR(quantitative real-time PCR,qPCR)方法,筛选到3个SWEETs基因在整个果实发育期内或某个发育时期表达量较高。亚细胞定位显示,两个SWEETs基因(CmSWEET3,CmSWEET7a)定位在细胞膜上。进一步通过酵母表达发现,甜瓜CmSWEET7a在体外具有转运葡萄糖和果糖的功能。本研究为揭示SWEET糖转运蛋白在甜瓜果实发育过程的调控作用奠定了基础。
文摘Fifteen expressed sequence tag (EST)-derived simple sequence repeats (EST-SSRs) were used to investigate genetic diversity in 139 plants obtained from seeds of 35 watermelon accessions collected from all the geographical provinces of Zimbabwe. In addition, 15 plants representing three commercial varieties developed in the United States (USA) were analyzed for comparison. A total of 65 alleles were detected among all the watermelon accessions. For the 13 polymorphic EST-SSR loci, number of alleles per locus varied from 2 to 13, with an average of 5 alleles per locus. Values for the polymorphic information content increased as the number of alleles increased, and varied from 0.15 to 0.77 with an average of 0.54 suggesting sufficient discriminatory power. Both cluster analysis and principal coordinate analysis (PCA) produced two major clusters;one with the 22 cow-melon accessions and the other with the 16 sweet watermelon accessions. Within the sweet watermelon group, two distinct sub-clusters formed, one of which contained only two of the commercial varieties from USA. Partitioning of genetic variation in the Zimbabwean material using analysis of molecular variation (AMOVA) revealed that 64% of the total variation resides between the two major forms, i.e. sweet watermelons and cow-melons, 28% between accessions within forms and 8% within accessions. The EST-SSR markers revealed a somewhat higher diversity in sweet watermelon accessions compared to that of cow-melons. This finding is contrary to previous reports using other markers (genomic SSR loci or RAPD) and/or a plant material that is likely to have experienced more stringent selection procedures compared to the landraces analyzed in our study.