Sweet potato leaf tips have high nutritional value,and exploring the differences in the metabolic profiles of leaf tips among different sweet potato varieties can provide information to improve their qualities.In this...Sweet potato leaf tips have high nutritional value,and exploring the differences in the metabolic profiles of leaf tips among different sweet potato varieties can provide information to improve their qualities.In this study,a UPLC-Q-Exactive Orbitrap/MS-based untargeted metabolomics method was used to evaluate the metabolites in leaf tips of 32 sweet potato varieties.Three varieties with distinct overall metabolic profiles(A01,A02,and A03),two varieties with distinct profiles of phenolic acids(A20 and A18),and three varieties with distinct profiles of flavonoids(A05,A12,and A16)were identified.In addition,a total of 163 and 29 differentially expressed metabolites correlated with the color and leaf shape of sweet potato leaf tips,respectively,were identified through morphological characterization.Group comparison analysis of the phenotypic traits and a metabolite-phenotypic trait correlation analysis indicated that the color differences of sweet potato leaf tips were markedly associated with flavonoids.Also,the level of polyphenols was correlated with the leaf shape of sweet potato leaf tips,with lobed leaf types having higher levels of polyphenols than the entire leaf types.The findings on the metabolic profiles and differentially expressed metabolites associated with the morphology of sweet potato leaf tips can provide useful information for breeding sweet potato varieties with higher nutritional value.展开更多
β-Sitosterol-D-glucoside(β-SDG)is a phytosterol compound whose antitumor activity has been confirmed by previous studies.However,its suppression on breast cancer remains unclear.To that purpose,we isolatedβ-SDG fro...β-Sitosterol-D-glucoside(β-SDG)is a phytosterol compound whose antitumor activity has been confirmed by previous studies.However,its suppression on breast cancer remains unclear.To that purpose,we isolatedβ-SDG from sweet potato and investigated the breast-cancer-inhibiting mechanism using proteomic analysis.The sweet potato species S6 with highβ-SDG content were chosen form 36 species andβ-SDG was isolated by HPLC.Afterwards,an in situ animal model of breast cancer was established,andβ-SDG significantly reduced the tumor volume of MCF-7 xenograft mice.Proteomic analysis of tumor tissues revealed that 127 of these proteins were upregulated and 80 were downregulated.Gene ontology and network analysis showed that regulatory proteins were mainly associated with epithelial-mesenchymal transition(EMT),myogenesis,cholesterol homeostasis,oxidative phosphorylation and reactive oxygen pathways,while Vimentin,NDUF,VDAC1,PPP2CA and SNx9 were the most significant 5 node degree genes.Meanwhile,in vitro and in vivo results showed that the protein expression of PPP2CA and Vimentin,which are markers of EMT,were involved in breast cancer cell metastasis and could be reversed byβ-SDG.This work highlightsβ-SDG as a bioactive compound in sweet potato and the potential therapeutic effect ofβ-SDG for the treatment of breast cancer by inhibiting metastasis.展开更多
The whole cold-chain for exporting sweet potato(native variety“Abees”),to foreign market included immediate curing operation directly after harvest helped in healing skin texture,however,in order to reduce postharve...The whole cold-chain for exporting sweet potato(native variety“Abees”),to foreign market included immediate curing operation directly after harvest helped in healing skin texture,however,in order to reduce postharvest soft rot(Rhizopus stolonifer)incidence following trimming,and washing,ultraviolet light(UV-C)treatment was used as a main sanitizer for eliminating the soft rot.Exposure of the roots to UV-C(254 nm)was applied in a UV-C room on freshly harvested and cured sweet potato while rolling up on a movable line at 20 cm distance for 1,2,and 3 hr.As combining UV-C treatment with chlorine(200 ppm)on roots,marked and significant reduction of the total microbial load and Rhizopus potential was achieved on root surfaces respectively compared with chlorine alone.It also reduced soft rot percentage to almost 0%infection.After 3 months of cold-storage,quality assessment of sweet potato showed that root characteristics were markedly maintained.The ability of UV-C light to induce phenylalanine ammonia lyase(PAL)enzyme activity in root tissue and maintain the activities of peroxidase and polyphenol oxidase,however with slight increase,was detected.UV-C caused an increase of phenol content in sweet potato tissue that made an activation of defense reaction against the rot causal pathogen.As the exposure time to UV-C light increased,a higher content of phenols occurred.Moreover,UV-C application caused decrease in sugar content of root tissue that is flavored by soft rot-causal pathogen.展开更多
In this article, we investigated the influence of size and initial water content on the effective diffusion coefficient of sweet potatoes samples cut into cubic and cylindrical shapes. The sizes of the cubic samples a...In this article, we investigated the influence of size and initial water content on the effective diffusion coefficient of sweet potatoes samples cut into cubic and cylindrical shapes. The sizes of the cubic samples are 0.5, 1, 1.5, 1.75, 2, 2.5 and 3 cm edge with a respective initial water content of 2.7, 3.76, 3.48, 2.68, 3.28, 2.17 and 2.29 kg/kgms. For cylindrical samples, the radius is set at 0.5 cm and sample heights are 1, 1.5, 2, 2.5, 3, 3.5 and 4 cm with respective water contents of 2.2, 3.19, 2.85, 2.1, 2.17, 2.39 and 2.03 kg/kgms. The effective diffusion coefficients of cubic samples are of the order of 10−10 and 10−9 m2∙s−1 grew with sample edge. As for the cylindrical samples, the effective diffusion coefficients were of the order of 10−9 m2∙s−1 and there was no linear correlation between cylinder height and their effective diffusion coefficient. As for the examination of the initial water content on the effective diffusion coefficient, it turned out that the initial water content had no influence on the effective diffusion coefficient of the sweet potato samples.展开更多
Sustainable weed management strategies are essential to reduce chemical and labor inputs. This study aimed to evaluate the effect of water extracts from sweet potato [Ipomoea batatas (L.) Lamarck] on seed germination ...Sustainable weed management strategies are essential to reduce chemical and labor inputs. This study aimed to evaluate the effect of water extracts from sweet potato [Ipomoea batatas (L.) Lamarck] on seed germination of Ageratum conyzoides L. under controlled conditions. The aqueous was produced from plant parts i.e., roots, stems, and leaves of sweet potato at concentrations of 0.025, 0.050, 0.075, and 0.100 g·mL<sup>-1</sup>. The results showed that the plant parts of sweet potato all contained allelopathic substances, which showed high-concentration inhibition and low-concentration promotion of seed germination of A. conyzoides. When the aqueous extract concentrations were 0.050, 0.075, and 0.100 g·mL<sup>-1</sup>, the germination of A. conyzoides seeds was inhibited, while the germination was promoted at a concentration of 0.025 g·mL<sup>-1</sup>. This shows that when the planting density of sweet potato is large, it can form an obvious prevention and control effect on A. conyzoides, and thus improve herbicide resistance management.展开更多
The sweet potato weevil(Cylas formicarius(Fab.)(Coleoptera: Brentidae)) is a pest that feeds on sweet potato(Ipomoea batatas(L.) Lam.(Solanales: Convolvulaceae)), causing substantial economic losses annually. However,...The sweet potato weevil(Cylas formicarius(Fab.)(Coleoptera: Brentidae)) is a pest that feeds on sweet potato(Ipomoea batatas(L.) Lam.(Solanales: Convolvulaceae)), causing substantial economic losses annually. However, no safe and effective methods have been found to protect sweet potato from this pest. Herbivore-induced plant volatiles(HIPVs)promote various defensive bioactivities, but their formation and the defense mechanisms in sweet potato have not been investigated. To identify the defensive HIPVs in sweet potato, the release dynamics of volatiles was monitored.The biosynthetic pathways and regulatory factors of the candidate HIPVs were revealed via stable isotope tracing and analyses at the transcriptional and metabolic levels. Finally, the anti-insect activities and the defense mechanisms of the gaseous candidates were evaluated. The production of(Z)-3-hexenyl acetate(z3HAC) and allo-ocimene was induced by sweet potato weevil feeding, with a distinct circadian rhythm. Ipomoea batatas ocimene synthase(IbOS) is first reported here as a key gene in allo-ocimene synthesis. Insect-induced wounding promoted the production of the substrate,(Z)-3-hexenol, and upregulated the expression of IbOS, which resulted in higher contents of z3HAC and allo-ocimene,respectively. Gaseous z3HAC and allo-ocimene primed nearby plants to defend themselves against sweet potato weevils. These results provide important data regarding the formation, regulation, and signal transduction mechanisms of defensive volatiles in sweet potato, with potential implications for improving sweet potato weevil management strategies.展开更多
Every breeding program that aims to create new and improved cultivars with desired traits mostly relies on information related to genetic diversity.Therefore,molecular characterization of germplasms is important to ob...Every breeding program that aims to create new and improved cultivars with desired traits mostly relies on information related to genetic diversity.Therefore,molecular characterization of germplasms is important to obtain target cultivars with desirable traits.Sweet potato[Ipomoea batatas(L.)Lam]is widely considered the world’s most important crop,with great diversity in morphological and phenotypic traits.The genetic diversity of 20 sweet potato germplasms originating from Bangladesh,CIP,Philippines,Taiwan,and Malaysia were compared,which was accomplished by genetic diversity analysis by exploring 20 microsatellite DNA markers for germplasm characterization and utilization.This information was effective in differentiating or clustering the sweet potato genotypes.A total of 64 alleles were generated using the 20 primers throughout the 20 germplasm samples,with locus IBS97 having the highest number of alleles(5),whereas locus IbU33 had the fewest alleles(2).The alleles varied in size from 105(IbU31)to 213 base pairs(IBS34).The Polymorphism Information Content(PIC)values for the loci IbL46 and IBS97 varied from 0.445 to 0.730.IBS97 has the highest number of effective alleles(3.704),compared to an average of 2.520.The average Shannon’s diversity index(H)was 1.003,ranging from 0.673 in IbU3 to 1.432 in IBS97.The value of gene flow(Nm)varied between 0.000 and 0.005,with an average of 0.003,whereas genetic differentiation(FST-values)ranged between 0.901 and 1.000.The sweet potato germplasm included in this study had a broad genetic base.SP1 vs.SP9 and SP12 vs.SP18 germplasm pairings had the greatest genetic distance(GD=0.965),while SP1 vs.SP2 germplasm couples had the least genetic diversity(GD=0.093).Twenty genotypes were classified into two groups in the UPGMA dendrogram,with 16 genotypes classified as group“A”and the remaining four genotypes,SP10,SP18,SP19,and SP20,classified as group“B.”According to cluster analysis,the anticipated heterozygosity(gene diversity)of Nei(1973)was 0.591 on average.In summary,SSR markers successfully evaluated the genetic relationships among the sweet potato accessions used and generated a high level of polymorphism.The results of the present study will be useful for the management of germplasm,improvement of the current breeding strategies,and the release of new cultivars as varieties.展开更多
To reveal the response mechanism of soil microbial community in different planting systems of sweet potato,the effects of rotation and intercropping on microbial community structure and carbon source utilization capac...To reveal the response mechanism of soil microbial community in different planting systems of sweet potato,the effects of rotation and intercropping on microbial community structure and carbon source utilization capacities of sweet potato rhizosphere soil were studied by using phospholipid fatty acid(PLFA)and ecological board(BIOLOG ECO)through field positioning experiments.In this study,three treatments were sweet potato continuous cropping,sweet potato-wheat rotation,and sweet potato-corn intercropping.The main results showed that compared with the sweet potato continuous cropping treatment,sweet potato rotation and intercropping changed the PLFA biomass of soil microorganisms;the contents of bacteria increased by 21.82%and 38.77%,respectively(P<0.05);the contents of actinomycetes increased by 6.98%and 12.77%,and the biomass of Gram-positive bacteria increased by 28.60%and 63.44%,respectively;and the biomass of Gram-negative bacteria increased by 18.21%and 22.29%,and the fungal contents decreased by 16.60%and 13.03%,respectively.With the extension of culture time,the average well color development(AWCD value)of sweet potato-corn intercropping was significantly higher than other two treatments.The utilization capacities of carboxylic acid compounds,polymers,carbohydrates,amino acids,and amines in the sweet potato-corn intercropping treatment were significantly increased by 17.28%,14.67%,54.17%,36.62%,and 20.00%,respectively,compared with the sweet potato continuous cropping treatment.The results of the multivariate analysis(RDA)showed that the changes of soil microbial community structure and functional diversity were controlled by many factors,and the soil available potassium and total nitrogen were the main driving factors.However,sweet potato-wheat rotation and sweet potato-corn intercropping could optimize the soil microbial community structure and enhance the microbial functional diversity,and the effect of sweet potato-corn intercropping treatment was better.展开更多
[Objectives]The paper was to verify the field efficacy of 1%bifenthrin·thiamethoxam GR replacing organophosphorus GR against sweet potato weevil and its impact on the yield and quality of sweet potato.[Methods]A ...[Objectives]The paper was to verify the field efficacy of 1%bifenthrin·thiamethoxam GR replacing organophosphorus GR against sweet potato weevil and its impact on the yield and quality of sweet potato.[Methods]A total of 4 field trials were conducted in Guangdong Province,including 1%bifenthrin·thiamethoxam GR applied at the doses of 3,4 and 5 kg/667 m^(2),and 3%phoxim GR applied at the dose of 4 kg/667 m^(2).[Results]1%Bifenthrin·thiamethoxam GR applied at the dose of 5 kg/667 m^(2)had excellent control effects on sweet potato weevil,with an average control effect of 77.60%,which was significantly higher than that of 3%phoxim GR applied at the dose of 4 kg/667 m^(2)(48.52%).And the average yield increase rate of sweet potato treated with 1%bifenthrin·thiamethoxam GR reached 24.79%,significantly higher than 12.37%in the control group.[Conclusions]1%Bifenthrin·thiamethoxam GR should be evenly distributed on the ridge surface near sweet potato within 5-7 d after planting,and the recommended dosage is 5 kg/667 m^(2),which will have good control effect on sweet potato weevil and increase the yield of sweet potato.展开更多
[Objectives]To investigate the protective effect of ethanol extract from sweet potato leaves on liver injury induced by CCl_(4)in mice.[Methods]25 ICR mice were randomly divided into blank group,model group,high-dose ...[Objectives]To investigate the protective effect of ethanol extract from sweet potato leaves on liver injury induced by CCl_(4)in mice.[Methods]25 ICR mice were randomly divided into blank group,model group,high-dose extract group(200 mg/kg),low-dose extract group(100 mg/kg)and positive control group(2 mg/kg colchicine),with 5 mice in each group.All groups except the blank group were given intraperitoneal injection of 20%CCl 4 olive oil solution(2 mL/kg),and the blank group was given the same dose of olive oil solution three times a week.After 4 weeks,each administration group was given the corresponding dose of drugs(10 mL/kg),and the blank group and model group were given the corresponding amount of normal saline for 2 weeks.After the last intragastric administration,fasting was required,but water was allowed,blood was taken from eyeballs,and upper serum was taken by static centrifugation.Serum AST,ALT,CRP,IL-6 and SOD levels were detected by the kit.[Results]Compared with the blank group,the serum AST and ALT levels in the model group were significantly increased;compared with the model group,the ethanol extract of sweet potato leaves could decrease the levels of ALT,AST,CRP,IL-6 and increase the level of SOD in serum.[Conclusions]The ethanol extract of sweet potato leaves had protective effect on the mice with liver injury induced by CCl_(4),and its mechanism may be to protect the liver by lowering enzymes,inhibiting inflammation and antioxidant stress.展开更多
[Objectives]The ultrasound-assisted aqueous two-phase extraction of sweet potato leaf polysaccharides was studied.[Methods]With the yield of sweet potato leaf polysaccharides as the index,the aqueous two-phase extract...[Objectives]The ultrasound-assisted aqueous two-phase extraction of sweet potato leaf polysaccharides was studied.[Methods]With the yield of sweet potato leaf polysaccharides as the index,the aqueous two-phase extraction system was determined,and the optimal extraction conditions were optimized by single-factor experiments and response surface methodology.[Results]The optimal parameters were ethanol concentration 25.68%,liquid-to-material ratio 55.83,and ultrasonic treatment time 38.33 min.Under these conditions,the yield of sweet potato leaf polysaccharides could reach 20.646 mg/g.[Conclusions]The ethanol/ammonium sulfate aqueous system is a rapid and efficient method for extracting sweet potato leaf polysaccharides,which is of great significance for the application of sweet potato leaf extract as a natural food additive.展开更多
This paper elaborated the quality characteristics,nutritional value and specific production area of Linshu sweet potato.Besides,it summarized the pollution-free production technology of Linshu sweet potato from the as...This paper elaborated the quality characteristics,nutritional value and specific production area of Linshu sweet potato.Besides,it summarized the pollution-free production technology of Linshu sweet potato from the aspects of origin selection,variety selection,production management,harvest and storage,so as to guide the normalization and standardization of production technology,improve production and quality,and further enhance the brand awareness of Linshu sweet potato in both the national and international markets.展开更多
This study was carried out at the Mamou Higher Institute of Technology during the period from March 10 to April 15, 2022, with the aim of designing and testing a solar dryer with forced convection by drying potatoes. ...This study was carried out at the Mamou Higher Institute of Technology during the period from March 10 to April 15, 2022, with the aim of designing and testing a solar dryer with forced convection by drying potatoes. The dryer was designed using local materials. Its main geometric parameters are: 1) height of the drying chamber (90 cm), 2) length of the drying chamber (50 cm), 3) width of the drying chamber (43 cm), 4) surface of the racks (0.1806 m<sup>2</sup>), 5) surface of the heat accumulator (0.2537 m<sup>2</sup>). The experiment focused on the vacuum test of the dryer for two days and that of the drying of the sweet potato for three days from 8:30 a.m. to 5:30 p.m. The average vacuum test temperature values of the three environments are respectively accumulator (43°C), dryer chamber (41°C) and ambient environment (34°C). Four kilograms (4 kg) of boiled sweet potato were dried. The average temperatures in the accumulator and in the drying chamber during the three days of drying are respectively 33°C and 39°C. The final mass of the dried product is 1.2 kg, with a quantity of water extracted of 2 liters or 63% of the initial mass of the product. The average drying rate is 0.074 kg/h. The drying kinetics showed a decreasing rate in the absence of the heating period and the constant rate period.展开更多
This study consisted to evaluate the effects of ecological practices on the yield performance of the JEWEL of orange-fleshed sweet potato (Ipomoea batatas (L.) Lam). The study was conducted in a Sudano-Sahelian croppi...This study consisted to evaluate the effects of ecological practices on the yield performance of the JEWEL of orange-fleshed sweet potato (Ipomoea batatas (L.) Lam). The study was conducted in a Sudano-Sahelian cropping system (Lantargou, eastern region of Burkina Faso). Agro-ecological practices consisted of the inputs of 3.20 t/ha of compost + 2.45 t/ha of wood ash (CO + WA);4.90 t/ha of wood ash (WA);6.40 t/ha of compost (CO) were compared to control with no inputs (T<sub>0</sub>). Each treatment was repeated four times. The crop management consisted of plowing, harrowing, raising of ridges with 40 cm height, burying of treatments, transplanting of cuttings, two weeding’s, and using of biopesticide called PIOL for crop protection. Composite soil samples per treatment were also collected at tuber harvest and analyzed to determine the effects of treatments on residual soil fertility. Results showed that the plant heights and diameters under the CO were significantly (P < 0.001) improved by 16% and 12% compared to T<sub>0</sub>. The WA treatment significantly increased the number of large tubers by 43% (P ≤ 0.01) compared to T<sub>0</sub>. Total tuber numbers, large tuber numbers and tuber yields of sweet potato under CO + WA were significantly (P < 0.001) and respectively improved by 27%, 50% and 31% compared to T<sub>0</sub>. All treatments increased soil organic matter, N, P and K contents, and reduced soil acidity compared with those obtained under T<sub>0</sub>. Soil K content was improved by 39% under CO + WA, and soil N content by 34% under WA compared to T<sub>0</sub>. Soil C/N ratio under CO + WA was reduced by 20% compared others treatments. But, the CO + WA treatment outperformed by improving residual soil N content by 38%, and the WA treatment by increasing soil K content by 50% compared to T<sub>0</sub>. In addition, soil pHH<sub>2</sub>O increased by 1.2 units under WA treatment compared to T<sub>0</sub>. As conclusion, the application of 6.4 t/ha of compost performed well to improve the vegetative growth of orange-fleshed sweet potato while the inputs of 3.2 t/ha of compost + 2.45 t/ha of wood ash were efficacy to significantly increase the tuber yields and improve the residual fertility of soil.展开更多
[ Objective ] The research aimed to provide reference for the application of extracts from sweet potato leaves in anti-aging cosmetics. [ Method ] The extraction and storage conditions for free radicals scavenging sub...[ Objective ] The research aimed to provide reference for the application of extracts from sweet potato leaves in anti-aging cosmetics. [ Method ] The extraction and storage conditions for free radicals scavenging substances from sweet potato leaves were optimized by orthogonal test and the bioactive components in extracts were investigated by correlation analysis. [ Result] Sweet potato leaves contain the bioactive substances scavenging DPPH free radical and hydroxyl free radical. Extracting solvent species is the most important factor that influencing extraction yield. The optimal extraction and storage conditions are as following: water as solvent, pH 8.0 of extracting liquid, storage at 25 ℃. There is a good positive linear relationship between the content of total phenols in sweet potato leaves and corresponding scavenging rates against both the DPPH free radical and hydroxyl free radical. For the content of total flavones in sweet potato leaves, just a correlation with scavenging rate against hydroxyl free radical shown in test. [ Conclusion] The phenols in ex- tracts could effectively scavenge both the DPPH free radical and hydroxyl free radical, whereas the flavones in extracts can only function on the hydroxyl free radical.展开更多
[Objective] The aim was to resolve the issue of sparsely planting (37 500-40 500 plants/hm2) of sweet potato in hilly areas. [Method] The starch-oriented Jishu No.21 and raw-eating oriented Jishu No.22 were studied ...[Objective] The aim was to resolve the issue of sparsely planting (37 500-40 500 plants/hm2) of sweet potato in hilly areas. [Method] The starch-oriented Jishu No.21 and raw-eating oriented Jishu No.22 were studied to explore effects of planting density on yield and sink and source characteristics of sweet potato. [IRe- suit] Leaf area index of Jishu No.21 and Jishu No.22 were increasing upon planting density. Leaf area index of the same planting density showed a single-peak curve. Specifically, leaf area index grew fast during the 40th-80th d after planting, and reached the peak on the 80th d after planting, followed by decreasing. What's more, ventilation and sunshine transmission both declined upon planting density, as well as the number of leaf, the number of branch, the length of vine, dry and fresh weights of stem and leaf. When planting density exceeded 75 000 plants/hm2, the yield of sweet potato dropped dramatically. Besides, the optimal planting density tended to be volatile upon cultivars. For example, the range of 45 000-60 000 plants/hm2 is the optimal planting density of Jishu No.21 and the range of 60 000-75 000 plants/hm2 is the optimal planting density of Jishu No.22. [Conclusion] It can be concluded that rational planting densities would well coordinate sweet potato growth of ground parts and underground parts to get a high yield by providing a rational group structure. Considering the optimal planting density differs upon cultivars, it is necessary to take genotype, environment, soil fertility and planting density into consideration in determining planting density.展开更多
Sweet potato not only contains primary materials such as dietary fiber, vitamin and soluble protein, but also provides abundant secondary metabolic products which have hygienical functions, like caffeic acid and caffe...Sweet potato not only contains primary materials such as dietary fiber, vitamin and soluble protein, but also provides abundant secondary metabolic products which have hygienical functions, like caffeic acid and caffeoylqinic acid derivatives, and anthocyanins, carotanoids. Many studies showed that many secondary products of sweet potato have hygienical functions as quenching free radicals, antioxidation, and preventing cancer, cardiovascular disease and diabetes. Further understanding of the hygienical functions of components in sweet potato is considered to be one of the important factors for developing new uses of sweet potato.展开更多
Field experiments were carried out to study the effects of plastic film mulching on soil physical characters, including soil temperature, soil moisture content and soil bulk density, and yield and yield components of ...Field experiments were carried out to study the effects of plastic film mulching on soil physical characters, including soil temperature, soil moisture content and soil bulk density, and yield and yield components of sweet potato. The results showed that plastic filming mulching increased soil temperature. Considering the soil temperature-increasing effect, the treatments ranked as black plastic film treatment 〉 white plastic film treatment 〉 control. However, with the deepening of soil layer, the warming effect of plastic film mulching was weakened. Black or white plastic film mulching was conducive to low T/R value, especially in the early growth stage of sweet potato. Plastic film mulching significantly improved the storage root yield of sweet potato. In terms of yield-improving effect, the treatments ranked as black plastic film treatment 〉 white plastic film treatment 〉 control. The storage root num- ber per plant showed a downward trend, but the weight of single storage root was increased.展开更多
[Objective] The content variations of the main nutrients in storage root during expanding stages and their mutual relationships in orange-fleshed sweet pota-to (Ipomoea Batatas(L.) Lam) were studied in this paper....[Objective] The content variations of the main nutrients in storage root during expanding stages and their mutual relationships in orange-fleshed sweet pota-to (Ipomoea Batatas(L.) Lam) were studied in this paper. [Method] The dynamics of main nutritional ingredients in orange-fleshed sweet potato-variety at 40, 70, 100 and 125 days after transplanting were investigated, and these traits included the 6- carotene content, Fe content, Zn content, starch content, protein content, glucose content, fructose content, and sucrose content. The relationships among these nutri- ents were analyzed during whole developing stage. [Result] B-carotene content in the whole growth period showed straightly increasing firstly, and then decreasing trend, which was unimodal fluctuation curve. The variation tendency of protein con- tent was gently decreasing firstly and then ascending. The dynamics of starch con- tent was similar to l^carotene content, while the fluctuation was stable. The chang- ing curve of carbohydrate was opposite to starch, showing decreasing firstly and then ascending. Fe content was decreasing all the whole developing stage, falling fast and then slowing down. Moreover, Zn content was plummeting. The sucrose content in fresh storage root had significantly negative correlation with β-carotene content, and had positive correlation with fructose content. Starch content had significantly negative correlation with fructose content, and had positive correlation with Zn content. [Conclusion] These research conclusions could guide the variety to har- vest at suitable time, so as to achieve the aim of micronutrition improvement.展开更多
Sweet potato(Ipomoea batatas) is not only an important food crop, but also an important economic crop and energy crop. In recent years, as the develop- ment of molecular biology techniques, more and more abiotic and...Sweet potato(Ipomoea batatas) is not only an important food crop, but also an important economic crop and energy crop. In recent years, as the develop- ment of molecular biology techniques, more and more abiotic and biotic stress-related genes were discovered in sweet potato. These genes can be divided into two categories: the regulatory genes and the functional genes, according to their different roles in stress pathways. This paper reviews the abiotic and biotic stress-related genes cloning, functional analysis and exogenous genes application in sweet potato, and makes expectation for stress resistance research of sweet potato in the future.展开更多
基金This work was supported by grants from the construction and operation of the Food Nutrition and Health Research Center of Guangdong Academy of Agricultural Sciences,China(XTXM 202205)the earmarked fund for CARS-10Sweetpotato,and the Guangdong Modern Agro-industry Technology Research System,China(2022KJ111).
文摘Sweet potato leaf tips have high nutritional value,and exploring the differences in the metabolic profiles of leaf tips among different sweet potato varieties can provide information to improve their qualities.In this study,a UPLC-Q-Exactive Orbitrap/MS-based untargeted metabolomics method was used to evaluate the metabolites in leaf tips of 32 sweet potato varieties.Three varieties with distinct overall metabolic profiles(A01,A02,and A03),two varieties with distinct profiles of phenolic acids(A20 and A18),and three varieties with distinct profiles of flavonoids(A05,A12,and A16)were identified.In addition,a total of 163 and 29 differentially expressed metabolites correlated with the color and leaf shape of sweet potato leaf tips,respectively,were identified through morphological characterization.Group comparison analysis of the phenotypic traits and a metabolite-phenotypic trait correlation analysis indicated that the color differences of sweet potato leaf tips were markedly associated with flavonoids.Also,the level of polyphenols was correlated with the leaf shape of sweet potato leaf tips,with lobed leaf types having higher levels of polyphenols than the entire leaf types.The findings on the metabolic profiles and differentially expressed metabolites associated with the morphology of sweet potato leaf tips can provide useful information for breeding sweet potato varieties with higher nutritional value.
基金supported by Special Key project of Technology Innovation and Application Development in Chongqing(CSTC2021jscx-gksb-N0033,CSTB2021TIAD-KPX0085)Science Foundation of School of Life Sciences SWU(20212005425201)County-University Cooperation Innovation Funds of Southwest University(SZ202102).
文摘β-Sitosterol-D-glucoside(β-SDG)is a phytosterol compound whose antitumor activity has been confirmed by previous studies.However,its suppression on breast cancer remains unclear.To that purpose,we isolatedβ-SDG from sweet potato and investigated the breast-cancer-inhibiting mechanism using proteomic analysis.The sweet potato species S6 with highβ-SDG content were chosen form 36 species andβ-SDG was isolated by HPLC.Afterwards,an in situ animal model of breast cancer was established,andβ-SDG significantly reduced the tumor volume of MCF-7 xenograft mice.Proteomic analysis of tumor tissues revealed that 127 of these proteins were upregulated and 80 were downregulated.Gene ontology and network analysis showed that regulatory proteins were mainly associated with epithelial-mesenchymal transition(EMT),myogenesis,cholesterol homeostasis,oxidative phosphorylation and reactive oxygen pathways,while Vimentin,NDUF,VDAC1,PPP2CA and SNx9 were the most significant 5 node degree genes.Meanwhile,in vitro and in vivo results showed that the protein expression of PPP2CA and Vimentin,which are markers of EMT,were involved in breast cancer cell metastasis and could be reversed byβ-SDG.This work highlightsβ-SDG as a bioactive compound in sweet potato and the potential therapeutic effect ofβ-SDG for the treatment of breast cancer by inhibiting metastasis.
文摘The whole cold-chain for exporting sweet potato(native variety“Abees”),to foreign market included immediate curing operation directly after harvest helped in healing skin texture,however,in order to reduce postharvest soft rot(Rhizopus stolonifer)incidence following trimming,and washing,ultraviolet light(UV-C)treatment was used as a main sanitizer for eliminating the soft rot.Exposure of the roots to UV-C(254 nm)was applied in a UV-C room on freshly harvested and cured sweet potato while rolling up on a movable line at 20 cm distance for 1,2,and 3 hr.As combining UV-C treatment with chlorine(200 ppm)on roots,marked and significant reduction of the total microbial load and Rhizopus potential was achieved on root surfaces respectively compared with chlorine alone.It also reduced soft rot percentage to almost 0%infection.After 3 months of cold-storage,quality assessment of sweet potato showed that root characteristics were markedly maintained.The ability of UV-C light to induce phenylalanine ammonia lyase(PAL)enzyme activity in root tissue and maintain the activities of peroxidase and polyphenol oxidase,however with slight increase,was detected.UV-C caused an increase of phenol content in sweet potato tissue that made an activation of defense reaction against the rot causal pathogen.As the exposure time to UV-C light increased,a higher content of phenols occurred.Moreover,UV-C application caused decrease in sugar content of root tissue that is flavored by soft rot-causal pathogen.
文摘In this article, we investigated the influence of size and initial water content on the effective diffusion coefficient of sweet potatoes samples cut into cubic and cylindrical shapes. The sizes of the cubic samples are 0.5, 1, 1.5, 1.75, 2, 2.5 and 3 cm edge with a respective initial water content of 2.7, 3.76, 3.48, 2.68, 3.28, 2.17 and 2.29 kg/kgms. For cylindrical samples, the radius is set at 0.5 cm and sample heights are 1, 1.5, 2, 2.5, 3, 3.5 and 4 cm with respective water contents of 2.2, 3.19, 2.85, 2.1, 2.17, 2.39 and 2.03 kg/kgms. The effective diffusion coefficients of cubic samples are of the order of 10−10 and 10−9 m2∙s−1 grew with sample edge. As for the cylindrical samples, the effective diffusion coefficients were of the order of 10−9 m2∙s−1 and there was no linear correlation between cylinder height and their effective diffusion coefficient. As for the examination of the initial water content on the effective diffusion coefficient, it turned out that the initial water content had no influence on the effective diffusion coefficient of the sweet potato samples.
文摘Sustainable weed management strategies are essential to reduce chemical and labor inputs. This study aimed to evaluate the effect of water extracts from sweet potato [Ipomoea batatas (L.) Lamarck] on seed germination of Ageratum conyzoides L. under controlled conditions. The aqueous was produced from plant parts i.e., roots, stems, and leaves of sweet potato at concentrations of 0.025, 0.050, 0.075, and 0.100 g·mL<sup>-1</sup>. The results showed that the plant parts of sweet potato all contained allelopathic substances, which showed high-concentration inhibition and low-concentration promotion of seed germination of A. conyzoides. When the aqueous extract concentrations were 0.050, 0.075, and 0.100 g·mL<sup>-1</sup>, the germination of A. conyzoides seeds was inhibited, while the germination was promoted at a concentration of 0.025 g·mL<sup>-1</sup>. This shows that when the planting density of sweet potato is large, it can form an obvious prevention and control effect on A. conyzoides, and thus improve herbicide resistance management.
基金supported by the National Natural Science Foundation of China–Guangdong Natural Science Foundation Joint Project (U1701234)。
文摘The sweet potato weevil(Cylas formicarius(Fab.)(Coleoptera: Brentidae)) is a pest that feeds on sweet potato(Ipomoea batatas(L.) Lam.(Solanales: Convolvulaceae)), causing substantial economic losses annually. However, no safe and effective methods have been found to protect sweet potato from this pest. Herbivore-induced plant volatiles(HIPVs)promote various defensive bioactivities, but their formation and the defense mechanisms in sweet potato have not been investigated. To identify the defensive HIPVs in sweet potato, the release dynamics of volatiles was monitored.The biosynthetic pathways and regulatory factors of the candidate HIPVs were revealed via stable isotope tracing and analyses at the transcriptional and metabolic levels. Finally, the anti-insect activities and the defense mechanisms of the gaseous candidates were evaluated. The production of(Z)-3-hexenyl acetate(z3HAC) and allo-ocimene was induced by sweet potato weevil feeding, with a distinct circadian rhythm. Ipomoea batatas ocimene synthase(IbOS) is first reported here as a key gene in allo-ocimene synthesis. Insect-induced wounding promoted the production of the substrate,(Z)-3-hexenol, and upregulated the expression of IbOS, which resulted in higher contents of z3HAC and allo-ocimene,respectively. Gaseous z3HAC and allo-ocimene primed nearby plants to defend themselves against sweet potato weevils. These results provide important data regarding the formation, regulation, and signal transduction mechanisms of defensive volatiles in sweet potato, with potential implications for improving sweet potato weevil management strategies.
基金The work was financially supported by National Agricultural Technology Program-II Project(NATP-2)BARC Component Bangladesh Agricultural Research Council,Farmgate,Dhaka-1215+2 种基金Bangladesh Agricultural Research Institute(BARI),Joydebpur,Gazipur 1701The work was partially supported by the Taif University Researchers Supporting Project No.(TURSP-2020/39)Taif University,Taif,Saudi Arabia.
文摘Every breeding program that aims to create new and improved cultivars with desired traits mostly relies on information related to genetic diversity.Therefore,molecular characterization of germplasms is important to obtain target cultivars with desirable traits.Sweet potato[Ipomoea batatas(L.)Lam]is widely considered the world’s most important crop,with great diversity in morphological and phenotypic traits.The genetic diversity of 20 sweet potato germplasms originating from Bangladesh,CIP,Philippines,Taiwan,and Malaysia were compared,which was accomplished by genetic diversity analysis by exploring 20 microsatellite DNA markers for germplasm characterization and utilization.This information was effective in differentiating or clustering the sweet potato genotypes.A total of 64 alleles were generated using the 20 primers throughout the 20 germplasm samples,with locus IBS97 having the highest number of alleles(5),whereas locus IbU33 had the fewest alleles(2).The alleles varied in size from 105(IbU31)to 213 base pairs(IBS34).The Polymorphism Information Content(PIC)values for the loci IbL46 and IBS97 varied from 0.445 to 0.730.IBS97 has the highest number of effective alleles(3.704),compared to an average of 2.520.The average Shannon’s diversity index(H)was 1.003,ranging from 0.673 in IbU3 to 1.432 in IBS97.The value of gene flow(Nm)varied between 0.000 and 0.005,with an average of 0.003,whereas genetic differentiation(FST-values)ranged between 0.901 and 1.000.The sweet potato germplasm included in this study had a broad genetic base.SP1 vs.SP9 and SP12 vs.SP18 germplasm pairings had the greatest genetic distance(GD=0.965),while SP1 vs.SP2 germplasm couples had the least genetic diversity(GD=0.093).Twenty genotypes were classified into two groups in the UPGMA dendrogram,with 16 genotypes classified as group“A”and the remaining four genotypes,SP10,SP18,SP19,and SP20,classified as group“B.”According to cluster analysis,the anticipated heterozygosity(gene diversity)of Nei(1973)was 0.591 on average.In summary,SSR markers successfully evaluated the genetic relationships among the sweet potato accessions used and generated a high level of polymorphism.The results of the present study will be useful for the management of germplasm,improvement of the current breeding strategies,and the release of new cultivars as varieties.
基金Supported by National Modern Agricultural Industry Technology System Construction Project(CARS-10-C12-2020).Qiguo HU(1982-)male+2 种基金P.R.Chinaassociate researcherdevoted to research about breeding and utilization of new sweet potato varieties。
文摘To reveal the response mechanism of soil microbial community in different planting systems of sweet potato,the effects of rotation and intercropping on microbial community structure and carbon source utilization capacities of sweet potato rhizosphere soil were studied by using phospholipid fatty acid(PLFA)and ecological board(BIOLOG ECO)through field positioning experiments.In this study,three treatments were sweet potato continuous cropping,sweet potato-wheat rotation,and sweet potato-corn intercropping.The main results showed that compared with the sweet potato continuous cropping treatment,sweet potato rotation and intercropping changed the PLFA biomass of soil microorganisms;the contents of bacteria increased by 21.82%and 38.77%,respectively(P<0.05);the contents of actinomycetes increased by 6.98%and 12.77%,and the biomass of Gram-positive bacteria increased by 28.60%and 63.44%,respectively;and the biomass of Gram-negative bacteria increased by 18.21%and 22.29%,and the fungal contents decreased by 16.60%and 13.03%,respectively.With the extension of culture time,the average well color development(AWCD value)of sweet potato-corn intercropping was significantly higher than other two treatments.The utilization capacities of carboxylic acid compounds,polymers,carbohydrates,amino acids,and amines in the sweet potato-corn intercropping treatment were significantly increased by 17.28%,14.67%,54.17%,36.62%,and 20.00%,respectively,compared with the sweet potato continuous cropping treatment.The results of the multivariate analysis(RDA)showed that the changes of soil microbial community structure and functional diversity were controlled by many factors,and the soil available potassium and total nitrogen were the main driving factors.However,sweet potato-wheat rotation and sweet potato-corn intercropping could optimize the soil microbial community structure and enhance the microbial functional diversity,and the effect of sweet potato-corn intercropping treatment was better.
文摘[Objectives]The paper was to verify the field efficacy of 1%bifenthrin·thiamethoxam GR replacing organophosphorus GR against sweet potato weevil and its impact on the yield and quality of sweet potato.[Methods]A total of 4 field trials were conducted in Guangdong Province,including 1%bifenthrin·thiamethoxam GR applied at the doses of 3,4 and 5 kg/667 m^(2),and 3%phoxim GR applied at the dose of 4 kg/667 m^(2).[Results]1%Bifenthrin·thiamethoxam GR applied at the dose of 5 kg/667 m^(2)had excellent control effects on sweet potato weevil,with an average control effect of 77.60%,which was significantly higher than that of 3%phoxim GR applied at the dose of 4 kg/667 m^(2)(48.52%).And the average yield increase rate of sweet potato treated with 1%bifenthrin·thiamethoxam GR reached 24.79%,significantly higher than 12.37%in the control group.[Conclusions]1%Bifenthrin·thiamethoxam GR should be evenly distributed on the ridge surface near sweet potato within 5-7 d after planting,and the recommended dosage is 5 kg/667 m^(2),which will have good control effect on sweet potato weevil and increase the yield of sweet potato.
基金Supported by National College Students Innovation and Entrepreneurship Training Program(202110599016)Guangxi Key R&D Project(GuiKeAB 18221095).
文摘[Objectives]To investigate the protective effect of ethanol extract from sweet potato leaves on liver injury induced by CCl_(4)in mice.[Methods]25 ICR mice were randomly divided into blank group,model group,high-dose extract group(200 mg/kg),low-dose extract group(100 mg/kg)and positive control group(2 mg/kg colchicine),with 5 mice in each group.All groups except the blank group were given intraperitoneal injection of 20%CCl 4 olive oil solution(2 mL/kg),and the blank group was given the same dose of olive oil solution three times a week.After 4 weeks,each administration group was given the corresponding dose of drugs(10 mL/kg),and the blank group and model group were given the corresponding amount of normal saline for 2 weeks.After the last intragastric administration,fasting was required,but water was allowed,blood was taken from eyeballs,and upper serum was taken by static centrifugation.Serum AST,ALT,CRP,IL-6 and SOD levels were detected by the kit.[Results]Compared with the blank group,the serum AST and ALT levels in the model group were significantly increased;compared with the model group,the ethanol extract of sweet potato leaves could decrease the levels of ALT,AST,CRP,IL-6 and increase the level of SOD in serum.[Conclusions]The ethanol extract of sweet potato leaves had protective effect on the mice with liver injury induced by CCl_(4),and its mechanism may be to protect the liver by lowering enzymes,inhibiting inflammation and antioxidant stress.
文摘[Objectives]The ultrasound-assisted aqueous two-phase extraction of sweet potato leaf polysaccharides was studied.[Methods]With the yield of sweet potato leaf polysaccharides as the index,the aqueous two-phase extraction system was determined,and the optimal extraction conditions were optimized by single-factor experiments and response surface methodology.[Results]The optimal parameters were ethanol concentration 25.68%,liquid-to-material ratio 55.83,and ultrasonic treatment time 38.33 min.Under these conditions,the yield of sweet potato leaf polysaccharides could reach 20.646 mg/g.[Conclusions]The ethanol/ammonium sulfate aqueous system is a rapid and efficient method for extracting sweet potato leaf polysaccharides,which is of great significance for the application of sweet potato leaf extract as a natural food additive.
文摘This paper elaborated the quality characteristics,nutritional value and specific production area of Linshu sweet potato.Besides,it summarized the pollution-free production technology of Linshu sweet potato from the aspects of origin selection,variety selection,production management,harvest and storage,so as to guide the normalization and standardization of production technology,improve production and quality,and further enhance the brand awareness of Linshu sweet potato in both the national and international markets.
文摘This study was carried out at the Mamou Higher Institute of Technology during the period from March 10 to April 15, 2022, with the aim of designing and testing a solar dryer with forced convection by drying potatoes. The dryer was designed using local materials. Its main geometric parameters are: 1) height of the drying chamber (90 cm), 2) length of the drying chamber (50 cm), 3) width of the drying chamber (43 cm), 4) surface of the racks (0.1806 m<sup>2</sup>), 5) surface of the heat accumulator (0.2537 m<sup>2</sup>). The experiment focused on the vacuum test of the dryer for two days and that of the drying of the sweet potato for three days from 8:30 a.m. to 5:30 p.m. The average vacuum test temperature values of the three environments are respectively accumulator (43°C), dryer chamber (41°C) and ambient environment (34°C). Four kilograms (4 kg) of boiled sweet potato were dried. The average temperatures in the accumulator and in the drying chamber during the three days of drying are respectively 33°C and 39°C. The final mass of the dried product is 1.2 kg, with a quantity of water extracted of 2 liters or 63% of the initial mass of the product. The average drying rate is 0.074 kg/h. The drying kinetics showed a decreasing rate in the absence of the heating period and the constant rate period.
文摘This study consisted to evaluate the effects of ecological practices on the yield performance of the JEWEL of orange-fleshed sweet potato (Ipomoea batatas (L.) Lam). The study was conducted in a Sudano-Sahelian cropping system (Lantargou, eastern region of Burkina Faso). Agro-ecological practices consisted of the inputs of 3.20 t/ha of compost + 2.45 t/ha of wood ash (CO + WA);4.90 t/ha of wood ash (WA);6.40 t/ha of compost (CO) were compared to control with no inputs (T<sub>0</sub>). Each treatment was repeated four times. The crop management consisted of plowing, harrowing, raising of ridges with 40 cm height, burying of treatments, transplanting of cuttings, two weeding’s, and using of biopesticide called PIOL for crop protection. Composite soil samples per treatment were also collected at tuber harvest and analyzed to determine the effects of treatments on residual soil fertility. Results showed that the plant heights and diameters under the CO were significantly (P < 0.001) improved by 16% and 12% compared to T<sub>0</sub>. The WA treatment significantly increased the number of large tubers by 43% (P ≤ 0.01) compared to T<sub>0</sub>. Total tuber numbers, large tuber numbers and tuber yields of sweet potato under CO + WA were significantly (P < 0.001) and respectively improved by 27%, 50% and 31% compared to T<sub>0</sub>. All treatments increased soil organic matter, N, P and K contents, and reduced soil acidity compared with those obtained under T<sub>0</sub>. Soil K content was improved by 39% under CO + WA, and soil N content by 34% under WA compared to T<sub>0</sub>. Soil C/N ratio under CO + WA was reduced by 20% compared others treatments. But, the CO + WA treatment outperformed by improving residual soil N content by 38%, and the WA treatment by increasing soil K content by 50% compared to T<sub>0</sub>. In addition, soil pHH<sub>2</sub>O increased by 1.2 units under WA treatment compared to T<sub>0</sub>. As conclusion, the application of 6.4 t/ha of compost performed well to improve the vegetative growth of orange-fleshed sweet potato while the inputs of 3.2 t/ha of compost + 2.45 t/ha of wood ash were efficacy to significantly increase the tuber yields and improve the residual fertility of soil.
基金Scientific Research Program of Beijing Municipal Commission of Education (KM200710011007)~~
文摘[ Objective ] The research aimed to provide reference for the application of extracts from sweet potato leaves in anti-aging cosmetics. [ Method ] The extraction and storage conditions for free radicals scavenging substances from sweet potato leaves were optimized by orthogonal test and the bioactive components in extracts were investigated by correlation analysis. [ Result] Sweet potato leaves contain the bioactive substances scavenging DPPH free radical and hydroxyl free radical. Extracting solvent species is the most important factor that influencing extraction yield. The optimal extraction and storage conditions are as following: water as solvent, pH 8.0 of extracting liquid, storage at 25 ℃. There is a good positive linear relationship between the content of total phenols in sweet potato leaves and corresponding scavenging rates against both the DPPH free radical and hydroxyl free radical. For the content of total flavones in sweet potato leaves, just a correlation with scavenging rate against hydroxyl free radical shown in test. [ Conclusion] The phenols in ex- tracts could effectively scavenge both the DPPH free radical and hydroxyl free radical, whereas the flavones in extracts can only function on the hydroxyl free radical.
基金Supported by Special Fund for China Agriculture Research SystemKey Application Technology and Innovation Subject of Shandong Province in 2013~~
文摘[Objective] The aim was to resolve the issue of sparsely planting (37 500-40 500 plants/hm2) of sweet potato in hilly areas. [Method] The starch-oriented Jishu No.21 and raw-eating oriented Jishu No.22 were studied to explore effects of planting density on yield and sink and source characteristics of sweet potato. [IRe- suit] Leaf area index of Jishu No.21 and Jishu No.22 were increasing upon planting density. Leaf area index of the same planting density showed a single-peak curve. Specifically, leaf area index grew fast during the 40th-80th d after planting, and reached the peak on the 80th d after planting, followed by decreasing. What's more, ventilation and sunshine transmission both declined upon planting density, as well as the number of leaf, the number of branch, the length of vine, dry and fresh weights of stem and leaf. When planting density exceeded 75 000 plants/hm2, the yield of sweet potato dropped dramatically. Besides, the optimal planting density tended to be volatile upon cultivars. For example, the range of 45 000-60 000 plants/hm2 is the optimal planting density of Jishu No.21 and the range of 60 000-75 000 plants/hm2 is the optimal planting density of Jishu No.22. [Conclusion] It can be concluded that rational planting densities would well coordinate sweet potato growth of ground parts and underground parts to get a high yield by providing a rational group structure. Considering the optimal planting density differs upon cultivars, it is necessary to take genotype, environment, soil fertility and planting density into consideration in determining planting density.
文摘Sweet potato not only contains primary materials such as dietary fiber, vitamin and soluble protein, but also provides abundant secondary metabolic products which have hygienical functions, like caffeic acid and caffeoylqinic acid derivatives, and anthocyanins, carotanoids. Many studies showed that many secondary products of sweet potato have hygienical functions as quenching free radicals, antioxidation, and preventing cancer, cardiovascular disease and diabetes. Further understanding of the hygienical functions of components in sweet potato is considered to be one of the important factors for developing new uses of sweet potato.
基金Supported by National Sweet Potato Industrial Technology System(CARS-11-C-16)~~
文摘Field experiments were carried out to study the effects of plastic film mulching on soil physical characters, including soil temperature, soil moisture content and soil bulk density, and yield and yield components of sweet potato. The results showed that plastic filming mulching increased soil temperature. Considering the soil temperature-increasing effect, the treatments ranked as black plastic film treatment 〉 white plastic film treatment 〉 control. However, with the deepening of soil layer, the warming effect of plastic film mulching was weakened. Black or white plastic film mulching was conducive to low T/R value, especially in the early growth stage of sweet potato. Plastic film mulching significantly improved the storage root yield of sweet potato. In terms of yield-improving effect, the treatments ranked as black plastic film treatment 〉 white plastic film treatment 〉 control. The storage root num- ber per plant showed a downward trend, but the weight of single storage root was increased.
基金Supported by Special Item for Construction of Modern Agricultural Industry Technology System(CARS-11)Harvest Plus Foundation(2014H8323.XZS)+1 种基金Independent Innovation Foundation of Jiangsu Provincial Agricultural Science and Technology(CX(13)2032)Jiangsu Provincial Support Plan(BE2013437)~~
文摘[Objective] The content variations of the main nutrients in storage root during expanding stages and their mutual relationships in orange-fleshed sweet pota-to (Ipomoea Batatas(L.) Lam) were studied in this paper. [Method] The dynamics of main nutritional ingredients in orange-fleshed sweet potato-variety at 40, 70, 100 and 125 days after transplanting were investigated, and these traits included the 6- carotene content, Fe content, Zn content, starch content, protein content, glucose content, fructose content, and sucrose content. The relationships among these nutri- ents were analyzed during whole developing stage. [Result] B-carotene content in the whole growth period showed straightly increasing firstly, and then decreasing trend, which was unimodal fluctuation curve. The variation tendency of protein con- tent was gently decreasing firstly and then ascending. The dynamics of starch con- tent was similar to l^carotene content, while the fluctuation was stable. The chang- ing curve of carbohydrate was opposite to starch, showing decreasing firstly and then ascending. Fe content was decreasing all the whole developing stage, falling fast and then slowing down. Moreover, Zn content was plummeting. The sucrose content in fresh storage root had significantly negative correlation with β-carotene content, and had positive correlation with fructose content. Starch content had significantly negative correlation with fructose content, and had positive correlation with Zn content. [Conclusion] These research conclusions could guide the variety to har- vest at suitable time, so as to achieve the aim of micronutrition improvement.
基金Supported by National Science Foundation of Jiangsu Province(BK20130716)Agricultural Science and Technology Innovation Fund of Jiangsu Province[CX(12)5018]+1 种基金Earmarked Fund for China Agriculture Research System(CARS-11-C-03)National Key Technology Research and Development Program of Jiangsu Province(BE2013437)~~
文摘Sweet potato(Ipomoea batatas) is not only an important food crop, but also an important economic crop and energy crop. In recent years, as the develop- ment of molecular biology techniques, more and more abiotic and biotic stress-related genes were discovered in sweet potato. These genes can be divided into two categories: the regulatory genes and the functional genes, according to their different roles in stress pathways. This paper reviews the abiotic and biotic stress-related genes cloning, functional analysis and exogenous genes application in sweet potato, and makes expectation for stress resistance research of sweet potato in the future.