In current dual porosity/permeability models,there exists a fundamental assumption that the adsorption-induced swelling is distributed uniformly within the representative elementary volume (REV),irrespective of its in...In current dual porosity/permeability models,there exists a fundamental assumption that the adsorption-induced swelling is distributed uniformly within the representative elementary volume (REV),irrespective of its internal structures and transient processes.However,both internal structures and transient processes can lead to the non-uniform swelling.In this study,we hypothesize that the non-uniform swelling is responsible for why coal permeability in experimental measurements is not only controlled by the effective stress but also is affected by the adsorption-induced swelling.We propose a concept of the swelling triangle composed of swelling paths to characterize the evolution of the non-uniform swelling and serve as a core link in coupled multiphysics.A swelling path is determined by a dimensionless volumetric ratio and a dimensionless swelling ratio.Different swelling paths have the same start and end point,and each swelling path represents a unique swelling case.The swelling path as the diagonal of the triangle represents the case of the uniform swelling while that as the two perpendicular boundaries represents the case of the localized swelling.The paths of all intermediate cases populate inside the triangle.The corresponding relations between the swelling path and the response of coal multiphysics are established by a non-uniform swelling coefficient.We define this method as the triangle approach and corresponding models as swelling path-based ones.The proposed concept and models are verified against a long-term experimental measurement of permeability and strains under constant effective stress.Our results demonstrate that during gas injection,coal multiphysics responses have a close dependence on the swelling path,and that in both future experiments and field predictions,this dependence must be considered.展开更多
This paper examines the effect of the microstructure and electrical conductivity(EC)on the swelling ratio and pressure in red-bed mudstone sampled from arid areas in the Xining region in the northeastern Tibetan Plate...This paper examines the effect of the microstructure and electrical conductivity(EC)on the swelling ratio and pressure in red-bed mudstone sampled from arid areas in the Xining region in the northeastern Tibetan Plateau.A series of laboratory tests,including swelling experiments,X-ray diffraction(XRD),and scanning electron microscope(SEM),was carried out for mechanical and microstructural analysis.The coupled influence of the EC and microstructural parameters on the expansion ratio and pressure was investigated,and the weight coefficients were discussed by the entropy weight method.The results revealed an increasing exponential trend in EC,and the maximum swelling speed occurred at an EC of approximately 10 μS/cm.In addition,a method for predicting the expansion potential is proposed based on the microstructure,and its reliability is verified by comparing with swelling experimental results.In addition,according to the image analysis results,the ranges of the change in the clay minerals content(CMC),the fractal dimension(FD),the average diameter(AD)of pores,and the plane porosity(PP)are 23.75%-53%,1.08-1.17,7.53-22.45 mm,and 0.62%-1.25%,respectively.Moreover,mudstone swelling is negatively correlated with the plane porosity,fractal dimension and average diameter and is linearly correlated with the clay mineral content.Furthermore,the weight values prove that the microstructural characteristics,including FD,AD,and PP,are the main factors influencing the expansion properties of red-bed mudstones in the Xining region.Based on the combination of macro and micro-analyses,a quantitative analysis of the swelling process of mudstones can provide a better reference for understanding the mechanism of expansion behavior.展开更多
In this study,the axial swelling strain of red-bed mudstone under different vertical stresses are measured by swell-under-load method,and the microstructure of mudstone after hygroscopic swelling is studied by mercury...In this study,the axial swelling strain of red-bed mudstone under different vertical stresses are measured by swell-under-load method,and the microstructure of mudstone after hygroscopic swelling is studied by mercury intrusion porosimetry(MIP).The weakening coefficient and Weibull distribution function are introduced into the coupling model of mudstone moisture diffusion-swelling deformation-fracture based on finite-discrete element method(FDEM).The weakening effect of moisture on mudstone's mechanical parameters,as well as the heterogeneity of swelling deformation and stress distribution,is considered.The microcrack behavior and energy evolution of mudstone during hygroscopic swelling deformation under different vertical stresses are studied.The results show that the axial swelling strain of mudstone decreases with increase of the vertical stress.At low vertical stresses,moisture absorption in mudstone leads to formation of cracks caused by hydration-induced expansion.Under high vertical stresses,a muddy sealing zone forms on the mudstone surface,preventing further water infiltration.The simulation results of mudstone swelling deformation also demonstrate that it involves both swelling of the mudstone matrix and swelling caused by crack expansion.Notably,crack expansion plays a dominant role in mudstone swelling.With increasing vertical stress,the cracks in mudstone change from tensile cracks to shear cracks,resulting in a significant reduction in the total number of cracks.While the evolution of mudstone kinetic energy shows similarities under different vertical stresses,the evolution of strain energy varies significantly due to the presence of different types of cracks in the mudstone.The findings provide a theoretical basis for understanding the hygroscopic swelling deformation mechanism of red-bed mudstone at various depths.展开更多
Experiments were conducted to evaluate the healing of drying cracks in air-dried bentonite-sand blocks after hydration and swelling in groundwater,providing justifications to simplify the protection of blocks prior to...Experiments were conducted to evaluate the healing of drying cracks in air-dried bentonite-sand blocks after hydration and swelling in groundwater,providing justifications to simplify the protection of blocks prior to installation in a high-level radioactive waste repository.Synthetic groundwater was prepared to represent the geochemistry of Beishan groundwater,and was used to hydrate the blocks during the swelling pressure and swelling strain measurements,as Beishan is the most promising site for China's repository.Healing of the surface cracks was recorded by photography,and healing of the internal cracks was visualized by CT images and hydraulic conductivity of air-dried blocks.The results indicate that the maximum swelling pressure and swelling strain are primarily affected by the geochemistry of Beishan groundwater,but not affected by the drying cracks.The maximum swelling pressure and swelling strain of air-dried blocks are comparable to or even higher than the pressure and strain of fresh blocks.The maximum swelling pressure measured in strong(i.e.high ion strength)Beishan groundwater was 44%of the pressure measured in deionized(DI)water,and the maximum swelling strain was reduced to 23%of the strain measured in DI water.Nevertheless,the remained swelling of the blocks hydrated in strong Beishan groundwater was sufficient to heal the surface and internal drying cracks,as demonstrated by the pictures of surface cracks and CT images.The hydraulic conductivity of the air-dried block permeated with strong groundwater was comparable(3.7×higher)to the hydraulic conductivity of the fresh block,indicating the self-healing of drying cracks after hydration and swelling in groundwater.A simplified method of protecting the block with plastic wraps before installation is recommended,since the remained swelling of the block hydrated in Beishan groundwater is sufficient to heal the drying cracks.展开更多
Geotechnical engineering data are usually small-sample and high-dimensional,which brings a lot of challenges in predictive modeling.This paper uses a typical high-dimensional and small-sample swell pressure(P_(s))data...Geotechnical engineering data are usually small-sample and high-dimensional,which brings a lot of challenges in predictive modeling.This paper uses a typical high-dimensional and small-sample swell pressure(P_(s))dataset to explore the possibility of using multi-algorithm hybrid ensemble and dimensionality reduction methods to mitigate the uncertainty of soil parameter prediction.Based on six machine learning(ML)algorithms,the base learner pool is constructed,and four ensemble methods,Stacking(SG),Blending(BG),Voting regression(VR),and Feature weight linear stacking(FWL),are used for the multi-algorithm ensemble.Furthermore,the importance of permutation is used for feature dimensionality reduction to mitigate the impact of weakly correlated variables on predictive modeling.The results show that the proposed methods are superior to traditional prediction models and base ML models,where FWL is more suitable for modeling with small-sample datasets,and dimensionality reduction can simplify the data structure and reduce the adverse impact of the small-sample effect,which points the way to feature selection for predictive modeling.Based on the ensemble methods,the feature importance of the five primary factors affecting P_(s) is the maximum dry density(31.145%),clay fraction(15.876%),swell percent(15.289%),plasticity index(14%),and optimum moisture content(13.69%),the influence of input parameters on P_(s) is also investigated,in line with the findings of the existing literature.展开更多
Numerous engineering cases have demonstrated that the expansive soil channel slope remains susceptible to damage with the implementation of a rigid or closed protective structure. It is common for the protective struc...Numerous engineering cases have demonstrated that the expansive soil channel slope remains susceptible to damage with the implementation of a rigid or closed protective structure. It is common for the protective structure to experience bulging failure due to excessive swelling pressure. To investigate the swelling pressure properties of expansive soil, the constant volume test was employed to study the influence of water content and reserved expansion deformation on the characteristics of swelling pressure in strong expansive soils, and also to explore the evolution mechanism of the swelling pressure. The findings demonstrate that the swelling pressure-time curve can be classified into swelling pressure-time softening and swelling pressure-time stability type. The swelling pressuretime curve of the specimen with low water content is the swelling pressure-time softening type, and the softening level will be weakened with increasing reserved expansion deformation. Besides, the maximum swelling pressure Psmax decreases with increasing water content and reserved expansion deformation, especially for expansion ratio η from 24% to 37%. The reserved deformation has little effect on reducing Psmax when it is beyond 7% of the expansion rate. The specimen with low water content has a more homogeneous structure due to the significant expansion-filling effect, and the fracture and reorganization of the aggregates in the specimens with low water content cause the swelling pressure-time softening behavior. In addition, the proposed swelling pressure-time curve prediction model has a good prediction on the test results. If necessary, a deformation space of about 7% expansion rate is recommended to be reserved in the engineering to reduce the swelling pressure except for keeping a stable water content.展开更多
Super absorbent resin(SAR)is prepared by aqueous high temperature polymerization using hydroxypropyl methylcellulose(HPMC)as monomer backbone material,acrylic acid(AA)and acrylamide(AM)as the graft copolymer monomer,p...Super absorbent resin(SAR)is prepared by aqueous high temperature polymerization using hydroxypropyl methylcellulose(HPMC)as monomer backbone material,acrylic acid(AA)and acrylamide(AM)as the graft copolymer monomer,potassium persulfate(KPS)as the initiator to generate free radicals,and N,N`-methylenebisacrylamide(MBA)as cross-linking agent for cross-linking reaction.Simutaneously,the influence of individual factors on the water absorption is investigated,and these factors are mainly AA,AM,KPS,MBA,HPMC,and reaction temperature.The optimized conditions are obtained by the experiment repeating for several times.The water absorption multiplicity and salt absorption multiplicity under the conditions are 782.4 and 132.5 g/g,respectivity.Furthermore,the effects of different temperatures and salt concentrations on its water absorption,as well as the swelling kinetics of SAR are studied.It is indicated the water-absorbing swelling process is mainly caused by the difference in water osmotic pressure and Na+concentration inside and outside the cross-linked molecular structure of the resin,which is not only consistent with the quasi-secondary kinetic model,but also with the Fick diffusion model.展开更多
Long-term permeability experiments have indicated that sorption-induced swelling can switch from internal to bulk depending on the evolutive sorption status.However,this sorption swelling switch mechanism has not been...Long-term permeability experiments have indicated that sorption-induced swelling can switch from internal to bulk depending on the evolutive sorption status.However,this sorption swelling switch mechanism has not been considered in current analytical permeability models.This study introduces a normalized sorption non-equilibrium index(SNEI)to characterize the sorption status,quantify the dynamical variations of matrix swelling accumulation and internal swelling partition,and formulate the sorption swelling switch model.The incorporation of this index into the extended total effective stress concept leads to an analytical transient coal permeability model.Model results show that the sorption swelling switch itself results in the permeability switch under stress-constrained conditions,while the confined bulk swelling suppresses the permeability recovery to the continuous reduction under displacement-constrained conditions.Model verifications show that current experimental observations correspond to the early stages of the transient process,and they could be extended to the whole process with these models.This study demonstrates the importance of the sorption swelling switch in determining permeability evolution using simple boundary conditions.It provides new insights into experimentally revealing the sorption swelling switch in the future,and underscores the requirement of a rigorous model for complex coupled processes in large-scale coal seams.展开更多
Vulvar Crohn’s disease (VCD) is a rare complication of Crohn’s disease, especially in pediatric population. An early diagnosis can result difficult if the complication does not present in conjunction with the classi...Vulvar Crohn’s disease (VCD) is a rare complication of Crohn’s disease, especially in pediatric population. An early diagnosis can result difficult if the complication does not present in conjunction with the classic gastrointestinal symptoms that characterize this disease. In this study we present the case of a 12-year-old girl whose initial symptom of Crohn’s disease was a symptomatic vulvar swelling promoted by a rectovaginal fistula. We also provide an overview of Crohn’s disease and the vulvar changes found in the course of this disease.展开更多
Objective:To observe the clinical effect of traditional Chinese medicine(TCM)on reducing swelling and pain in patients with mixed hemorrhoids.Methods:Sixty patients with mixed hemorrhoids who were admitted to the Hosp...Objective:To observe the clinical effect of traditional Chinese medicine(TCM)on reducing swelling and pain in patients with mixed hemorrhoids.Methods:Sixty patients with mixed hemorrhoids who were admitted to the Hospital of Traditional Chinese Medicine of Qiqihar from January 2023 to January 2024 were selected and divided into two groups.The treatment group(n=30)was treated with mixed hemorrhoid ligation combined with traditional Chinese swelling and pain medicine,and the control group(n=30)was only treated with mixed hemorrhoid ligation.The pain level,edema score,and prognosis of the two groups after the intervention were analyzed.The clinical efficacy was used as the evaluation criterion to compare the clinical effects of different treatment options.Results:After the treatment,the pain score,edema score,and prognostic wound score of the treatment group were all lower than those of the control group(P 0.05).The total clinical effectiveness of the treatment group(100%)was higher than that of the control group(76.67%),(χ^(2)=4.2857,P<0.05).Conclusion:The application of traditional Chinese swelling and pain medicine in treating patients with mixed hemorrhoids effectively reduced the patient’s pain,reduced the degree of wound edema,promoted wound healing,and improved the patient’s prognosis.The curative effect was significant and had a positive impact.展开更多
Swelling geomaterials in northwestern and northeastern China are exposed to both seasonal wettingdrying(DW)and freezing-thawing(FT)processes.The influence of full-process wetting-dryingfreezing-thawing(WDFT)cycles on ...Swelling geomaterials in northwestern and northeastern China are exposed to both seasonal wettingdrying(DW)and freezing-thawing(FT)processes.The influence of full-process wetting-dryingfreezing-thawing(WDFT)cycles on their hydro-mechanical behaviour has not been well investigated.In this study,a series of swelling and compression tests was conducted on Yanji weathered mudstone subjected to different WD,FT and WDFT processes and the effects of seasonal processes and cyclic number on the swelling strain,compression index,rebound index and hydraulic conductivity were experimentally determined.With the increasing WD,FT and WDFT cycles,the starting time of primary swelling decreased first due to the increasing water infiltration with the appearance of large pores,and then increased because of the decreasing swelling potential of compact aggregates after two cycles.Moreover,as the cyclic number increased,the final swelling strain declined.Upon loading,the specimens after cyclic processes exhibited a smaller compression index at low stresses due to their smaller interparticle distance after swelling,but a larger one owing to the collapse of large pores and cracks at high vertical stresses.After unloading,the rebound index decreased with the increase of cyclic number due to the irreversible collapse of large pores and cracks.The hydraulic conductivity increased with the increasing cyclic number at low vertical stresses(large void ratios).With the further increase of vertical stress,the increase of hydraulic conductivity induced by cyclic processes became indiscernible.Moreover,a comparison among three processes suggested that the WDFT process exerted a more pronounced influence on the hydro-mechanical behaviour of Yanji mudstone than the separate WD or FT process.展开更多
The phenomena of shrinkage and swelling of clay induce damage to housing structures every year. Precipitation, climatic changes and drought are the cause of wall cracks due to subsidence or swelling of the supporting ...The phenomena of shrinkage and swelling of clay induce damage to housing structures every year. Precipitation, climatic changes and drought are the cause of wall cracks due to subsidence or swelling of the supporting soil. This movement alters the balance between the soil and the structures. To explain this defection, the soil is made up of three elements: the solid, the liquid and the gas. Sometimes in a natural way or following a human intervention, one of these elements undergoes an abnormal variation that causes the loss of the balance between land and works. It is in this sense that this article deals on the one hand with the factors of predisposition and triggering of the phenomena of shrinkage-swelling of the clay soils of Diamniadio and on the other hand, the factors of aggravation linked to the lithological heterogeneity and the variation in the thickness of the layers susceptible to shrinkage-swelling. The studies carried out have enabled a deeper understanding of the behavior of expansive soils following their interactions with climate, vegetation, hydrology, hydrogeology, constructions among others, but also the influence of lateral and vertical variations of fine soil facies.展开更多
In Senegal, the Diamniadio, Sebikhotane and Bargny sector contains clay soils that are problematic for construction. In order to have more information on the behavior of the clay soils of Diamniadio, free swelling tes...In Senegal, the Diamniadio, Sebikhotane and Bargny sector contains clay soils that are problematic for construction. In order to have more information on the behavior of the clay soils of Diamniadio, free swelling tests followed by load-discharge cycles were carried out according to standard NF P 94-090-1. These tests were carried out using an Oedometric device on the three samples from the study site (sandy clays with calcareous concretion, marls with crumbs and laminated marls with attapulgite) to apprehend their swelling aspects in saturated conditions. For the free swelling test, a determination of the different swelling phases will be carried out followed by a comparison of the rate of evolution of the phases for the three samples from the site. In the same vein, the compressibility characteristics of the samples will also be provided from load-unload Oedometric tests. Thereafter, we proceed to a comparison of the void index at the initial state of the samples after two charge-discharge cycles and the influence of the cycles on the reorganization of the internal structure of the samples. These studies will provide more information on the swelling behavior of Diamniadio soils in the presence of water.展开更多
Matrix swelling effect will cause the change of microstructure of coal reservoir and its permeability,which is the key factor affecting the engineering effect of CO_(2)-ECBM technology.The Sihe and Yuwu collieries are...Matrix swelling effect will cause the change of microstructure of coal reservoir and its permeability,which is the key factor affecting the engineering effect of CO_(2)-ECBM technology.The Sihe and Yuwu collieries are taken as research objects.Firstly,visualization reconstruction of coal reservoir is realized.Secondly,the evolution of the pore/fracture structures under different swelling contents is discussed.Then,the influence of matrix phase with different swelling contents on permeability is discussed.Finally,the mechanism of swelling effect during the CO_(2)-ECBM process is further discussed.The results show that the intra-matrix pores and matrix-edge fractures are the focus of this study,and the contacting area between matrix and pore/fracture is the core area of matrix swelling.The number of matrix particles decreases with the increase of size,and the distribution of which is isolated with small size and interconnected with large size.The swelling effect of matrix particles with larger size has a great influence on the pore/fracture structures.The number of connected pores/fractures is limited and only interconnected in a certain direction.With the increase of matrix swelling content,the number,porosity,width,fractal dimension,surface area and volume of pores/fractures decrease,and their negative contribution to absolute permeability increases from 0.368% to 0.633% and 0.868%-1.404%,respectively.With the increase of swelling content,the number of intra-matrix pores gradually decreases and the pore radius becomes shorter during the CO_(2)-ECBM process.The matrix continuously expands to the connected fractures,and the width of connected fractures gradually shorten.Under the influence of matrix swelling,the bending degree of fluid flow increases gradually,so the resistance of fluid migration increases and the permeability gradually decreases.This study shows that the matrix swelling effect is the key factor affecting CBM recovery,and the application of this effect in CO_(2)-ECBM process can be discussed.展开更多
Hydrogels with their time-dependent intrinsic behaviors have recently been used widely in soft structures as sensors/actuators.One of the most interesting structures is the bilayer made up of hydrogels which may under...Hydrogels with their time-dependent intrinsic behaviors have recently been used widely in soft structures as sensors/actuators.One of the most interesting structures is the bilayer made up of hydrogels which may undergo swelling-induced bending.In this work,by proposing a semi-analytical method,the transient bending of hydrogel-based bilayers is investigated.Utilizing nonlinear solid mechanics,a robust semi-analytical solution is developed which captures the transient finite bending of hydrogel-based bilayers.Moreover,the multiphysics model of the hydrogels is implemented in the finite element method(FEM) framework to verify the developed semi-analytical procedure results.The effects of different material properties are investigated to illustrate the nonlinear behavior of these structures.The von-Mises stress contour extracted from FEM shows that the critical area of these soft structures is at the interface of the layers which experiences the maximum stress,and this area is most likely to rupture in large deformations.展开更多
In this study,hydrogels were prepared from municipal sludge to recycle and realize the value-added utilization of the carbon components in this abundant waste material.The carbon sources were extracted from the munici...In this study,hydrogels were prepared from municipal sludge to recycle and realize the value-added utilization of the carbon components in this abundant waste material.The carbon sources were extracted from the municipal sludge using synthesised nano CaO_(2)as an oxidant,and the carbon sources were graft copolymerised with acrylic acid monomer using N,N′-methylenebisacrylamide as a crosslinking agent and ammonium persulfate as an initiator.The factors influencing the hydrogel preparation were investigated by single-factor experiments.Based on the results of the single-factor experiments,a hydrogel with a swelling ratio of up to 19768.4%at 12 h was prepared with an oxidant dosage of 0.20 g,a monomer dosage of 5.8 g,a neutralisation degree of the monomer of 70%,an initiator dosage of 0.15 g,and a crosslinking agent dosage of 0.15 g.The hydrogel preparation conditions were optimized using the response surface method,and the interactions between the different reaction conditions were analysed to obtain the best preparation conditions.X-ray diffraction results showed that hydrogels were amorphous in structure.Scanning electron microscopy images showed that the SiO_(2)particles from the sludge acted as crosslinking points between different layers of hydrogel chains.The crosslinking polymerisation and crosslinking agent worked together to form hydrogels with an inorganic-organic double network structure,and this structure was highly stretchable,resulting in hydrogels with good swelling properties.展开更多
A water-swelling material is one of the rubbery impermeable materials which mixed synthetic resin elastomers as a base material, high absorbency polymers, filler and solvents. In this study, swelling characteristics o...A water-swelling material is one of the rubbery impermeable materials which mixed synthetic resin elastomers as a base material, high absorbency polymers, filler and solvents. In this study, swelling characteristics of the water-swelling material on the water polluted with COD and BOD, as an impermeable material at coastal landfill sites, are examined by laboratory swelling ratio test. Furthermore, the factor in which it influences the swelling pressure of water-swelling material is clarified by measuring the swelling pressure. As the results, the COD nor the BOD concentrations in the soaked water influence the swelling ratio of the water-swelling material. When the thicknesses of water-swelling material are 2 mm and 3 mm, the maximum swelling pressure of 0.5 MPa or more that corresponds to hydraulic pressure by depth of 50 m is possessed.展开更多
Poly(methacrylic acid co-poloxamer) hydrogel networks were synthesized by free radical solution polymerization and their equilibrium swelling and solute permeation properties were characterized. These gels exhibited p...Poly(methacrylic acid co-poloxamer) hydrogel networks were synthesized by free radical solution polymerization and their equilibrium swelling and solute permeation properties were characterized. These gels exhibited pH dependant swelling and solute diffusivity due to the formation or disruption of hydrogen bonded complexation between methacrylic acid (MAA) and etheric (EO). In neutral and basic conditions (above the swelling transition pH), the copolymer swelling was greatly higher than acid condition. In complexed hydrogels, the diffusion coefficients of vitamin B12 (VB12) were in the range of 10-10 to 10-7 cm2s-1; While in uncomplexed hydrogels, the values were about 210-6 cm2s-1. The comonomer composition and synthesis conditions have great effect on the structure, and thereby, swelling and solute diffusion characteristics of the resultant hydrogels. For the copolymers with composition of less than or more than 1:1 MAA/EO molar ratio, the plot of lnD vs 1/H-1 followed two different linear equations of 慺ree volume theory? respectively.展开更多
Compacted bentonite-sand(B/S)mixtures have been used as a barrier material in engineered barrier systems(EBSs)of deep geological repositories(DGR)to store nuclear wastes.This study investigates the individual and comb...Compacted bentonite-sand(B/S)mixtures have been used as a barrier material in engineered barrier systems(EBSs)of deep geological repositories(DGR)to store nuclear wastes.This study investigates the individual and combined effects of different chemical compositions of deep groundwaters(chemical factor)at potential repository sites in Canada(the Trenton and Guelph regions in Ontario),heat generated in DGRs(thermal factor),dry densities and mass ratios of bentonite and sand mixtures(physical factors)on the swelling behavior and ability of bentonite-based materials.In this study,swelling tests are conducted on B/S mixtures with different B/S mix ratios(20/80 to 70/30),compacted at different dry densities(ρd=1.6-2 g/cm^(3)),saturated with different types of water(distilled water and simulated deep groundwater of Trenton and Guelph)and exposed to different temperatures(20℃-80℃).Moreover,scanning electron microscopy(SEM)analyses,mercury intrusion porosimetry(MIP)tests and X-ray diffractometry(XRD)analyses are carried out to evaluate the morphological,microstructural and mineralogical characteristics of the B/S mixtures.The test results indicate that the swelling potential of the B/S mixtures is significantly affected by these physical and chemical factors as well as the combined effects of the chemical and thermal factors.A significant decrease in the swelling capacity is observed when the B/S materials are exposed to the aforementioned groundwaters.A large decrease in the swelling capacity is observed for higher bentonite content in the mixtures.Moreover,higher temperatures intensify the chemically-induced reduction of the swelling capacity of the B/S barrier materials.This decrease in the swelling capacity is caused by the chemical and/or microstructural changes of the materials.The results from this research will help engineers to design and build EBSs for DGRs with similar groundwater and thermal conditions.展开更多
Cohesive non-swelling soil(CNS)cushion technology is widely used to solve swelling deformation problems in expansive soil areas.However,the swelling inhibition mechanism is still not fully understood.In this study,the...Cohesive non-swelling soil(CNS)cushion technology is widely used to solve swelling deformation problems in expansive soil areas.However,the swelling inhibition mechanism is still not fully understood.In this study,the inhibition effect on expansive soil using a CNS layer was studied by performing five types of laboratory model tests under unidirectional seepage.The results showed that CNS cushion technology produced a sound inhibition effect on the swelling characteristics of expansive soil.It was shown that the cations in the CNS layer moved downward and accumulated on the surface of solids and produced an electrical environment inside the expansive soil.In this process,the adsorbed hydrated cations participated in ion exchange with the expansive soil,leading to the modification effect on its swelling potential.Meanwhile,the adsorbed water membrane surrounding the expansive soil aggregates formed by the hydrated cations obstructed further adsorption of water molecules,which inhibited the swelling development of expansive soil.Therefore,the swelling inhibition mechanism can be attributed to three factors:(i)modification effect,(ii)electrical environment,and(iii)deadweight of the CNS layer.The combined contribution of modification effect and electrical environment can be considered as an electric charge effect,which mainly controls the swelling characteristics of expansive soil.展开更多
基金supported by the Australian Research Council(Grant No.DP200101293)supported by the UWA-China Joint Scholarships(201906430030).
文摘In current dual porosity/permeability models,there exists a fundamental assumption that the adsorption-induced swelling is distributed uniformly within the representative elementary volume (REV),irrespective of its internal structures and transient processes.However,both internal structures and transient processes can lead to the non-uniform swelling.In this study,we hypothesize that the non-uniform swelling is responsible for why coal permeability in experimental measurements is not only controlled by the effective stress but also is affected by the adsorption-induced swelling.We propose a concept of the swelling triangle composed of swelling paths to characterize the evolution of the non-uniform swelling and serve as a core link in coupled multiphysics.A swelling path is determined by a dimensionless volumetric ratio and a dimensionless swelling ratio.Different swelling paths have the same start and end point,and each swelling path represents a unique swelling case.The swelling path as the diagonal of the triangle represents the case of the uniform swelling while that as the two perpendicular boundaries represents the case of the localized swelling.The paths of all intermediate cases populate inside the triangle.The corresponding relations between the swelling path and the response of coal multiphysics are established by a non-uniform swelling coefficient.We define this method as the triangle approach and corresponding models as swelling path-based ones.The proposed concept and models are verified against a long-term experimental measurement of permeability and strains under constant effective stress.Our results demonstrate that during gas injection,coal multiphysics responses have a close dependence on the swelling path,and that in both future experiments and field predictions,this dependence must be considered.
基金the funding support from National Natural Science Foundation of China(Grant No.42077271)Sichuan Science and Technology Program,China(Grant No.2023YFS0364)Chengdu Science and Technology Program(Grant No.2022-YF05-00340-SN).
文摘This paper examines the effect of the microstructure and electrical conductivity(EC)on the swelling ratio and pressure in red-bed mudstone sampled from arid areas in the Xining region in the northeastern Tibetan Plateau.A series of laboratory tests,including swelling experiments,X-ray diffraction(XRD),and scanning electron microscope(SEM),was carried out for mechanical and microstructural analysis.The coupled influence of the EC and microstructural parameters on the expansion ratio and pressure was investigated,and the weight coefficients were discussed by the entropy weight method.The results revealed an increasing exponential trend in EC,and the maximum swelling speed occurred at an EC of approximately 10 μS/cm.In addition,a method for predicting the expansion potential is proposed based on the microstructure,and its reliability is verified by comparing with swelling experimental results.In addition,according to the image analysis results,the ranges of the change in the clay minerals content(CMC),the fractal dimension(FD),the average diameter(AD)of pores,and the plane porosity(PP)are 23.75%-53%,1.08-1.17,7.53-22.45 mm,and 0.62%-1.25%,respectively.Moreover,mudstone swelling is negatively correlated with the plane porosity,fractal dimension and average diameter and is linearly correlated with the clay mineral content.Furthermore,the weight values prove that the microstructural characteristics,including FD,AD,and PP,are the main factors influencing the expansion properties of red-bed mudstones in the Xining region.Based on the combination of macro and micro-analyses,a quantitative analysis of the swelling process of mudstones can provide a better reference for understanding the mechanism of expansion behavior.
基金funded by the National Natural Science Foundation of China(No.42172308)the Youth Innovation Promotion Association CAS(No.2022331).
文摘In this study,the axial swelling strain of red-bed mudstone under different vertical stresses are measured by swell-under-load method,and the microstructure of mudstone after hygroscopic swelling is studied by mercury intrusion porosimetry(MIP).The weakening coefficient and Weibull distribution function are introduced into the coupling model of mudstone moisture diffusion-swelling deformation-fracture based on finite-discrete element method(FDEM).The weakening effect of moisture on mudstone's mechanical parameters,as well as the heterogeneity of swelling deformation and stress distribution,is considered.The microcrack behavior and energy evolution of mudstone during hygroscopic swelling deformation under different vertical stresses are studied.The results show that the axial swelling strain of mudstone decreases with increase of the vertical stress.At low vertical stresses,moisture absorption in mudstone leads to formation of cracks caused by hydration-induced expansion.Under high vertical stresses,a muddy sealing zone forms on the mudstone surface,preventing further water infiltration.The simulation results of mudstone swelling deformation also demonstrate that it involves both swelling of the mudstone matrix and swelling caused by crack expansion.Notably,crack expansion plays a dominant role in mudstone swelling.With increasing vertical stress,the cracks in mudstone change from tensile cracks to shear cracks,resulting in a significant reduction in the total number of cracks.While the evolution of mudstone kinetic energy shows similarities under different vertical stresses,the evolution of strain energy varies significantly due to the presence of different types of cracks in the mudstone.The findings provide a theoretical basis for understanding the hygroscopic swelling deformation mechanism of red-bed mudstone at various depths.
基金supported by the National Natural Science Foundation of China(Grant No.41972265)the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2021-57)+1 种基金the Gansu Province Science Foundation(Grant No.20JR10RA492)Special thanks to the Environmental Research and Education Foundation for supporting the first author(Y.Tan)through a fellowship for his study at the University of Wisconsin-Madison.
文摘Experiments were conducted to evaluate the healing of drying cracks in air-dried bentonite-sand blocks after hydration and swelling in groundwater,providing justifications to simplify the protection of blocks prior to installation in a high-level radioactive waste repository.Synthetic groundwater was prepared to represent the geochemistry of Beishan groundwater,and was used to hydrate the blocks during the swelling pressure and swelling strain measurements,as Beishan is the most promising site for China's repository.Healing of the surface cracks was recorded by photography,and healing of the internal cracks was visualized by CT images and hydraulic conductivity of air-dried blocks.The results indicate that the maximum swelling pressure and swelling strain are primarily affected by the geochemistry of Beishan groundwater,but not affected by the drying cracks.The maximum swelling pressure and swelling strain of air-dried blocks are comparable to or even higher than the pressure and strain of fresh blocks.The maximum swelling pressure measured in strong(i.e.high ion strength)Beishan groundwater was 44%of the pressure measured in deionized(DI)water,and the maximum swelling strain was reduced to 23%of the strain measured in DI water.Nevertheless,the remained swelling of the blocks hydrated in strong Beishan groundwater was sufficient to heal the surface and internal drying cracks,as demonstrated by the pictures of surface cracks and CT images.The hydraulic conductivity of the air-dried block permeated with strong groundwater was comparable(3.7×higher)to the hydraulic conductivity of the fresh block,indicating the self-healing of drying cracks after hydration and swelling in groundwater.A simplified method of protecting the block with plastic wraps before installation is recommended,since the remained swelling of the block hydrated in Beishan groundwater is sufficient to heal the drying cracks.
基金great gratitude to National Key Research and Development Project(Grant No.2019YFC1509800)for their financial supportNational Nature Science Foundation of China(Grant No.12172211)for their financial support.
文摘Geotechnical engineering data are usually small-sample and high-dimensional,which brings a lot of challenges in predictive modeling.This paper uses a typical high-dimensional and small-sample swell pressure(P_(s))dataset to explore the possibility of using multi-algorithm hybrid ensemble and dimensionality reduction methods to mitigate the uncertainty of soil parameter prediction.Based on six machine learning(ML)algorithms,the base learner pool is constructed,and four ensemble methods,Stacking(SG),Blending(BG),Voting regression(VR),and Feature weight linear stacking(FWL),are used for the multi-algorithm ensemble.Furthermore,the importance of permutation is used for feature dimensionality reduction to mitigate the impact of weakly correlated variables on predictive modeling.The results show that the proposed methods are superior to traditional prediction models and base ML models,where FWL is more suitable for modeling with small-sample datasets,and dimensionality reduction can simplify the data structure and reduce the adverse impact of the small-sample effect,which points the way to feature selection for predictive modeling.Based on the ensemble methods,the feature importance of the five primary factors affecting P_(s) is the maximum dry density(31.145%),clay fraction(15.876%),swell percent(15.289%),plasticity index(14%),and optimum moisture content(13.69%),the influence of input parameters on P_(s) is also investigated,in line with the findings of the existing literature.
基金financially supported by the National Key R&D Program of China (Grant No. 2019YFC1509901)。
文摘Numerous engineering cases have demonstrated that the expansive soil channel slope remains susceptible to damage with the implementation of a rigid or closed protective structure. It is common for the protective structure to experience bulging failure due to excessive swelling pressure. To investigate the swelling pressure properties of expansive soil, the constant volume test was employed to study the influence of water content and reserved expansion deformation on the characteristics of swelling pressure in strong expansive soils, and also to explore the evolution mechanism of the swelling pressure. The findings demonstrate that the swelling pressure-time curve can be classified into swelling pressure-time softening and swelling pressure-time stability type. The swelling pressuretime curve of the specimen with low water content is the swelling pressure-time softening type, and the softening level will be weakened with increasing reserved expansion deformation. Besides, the maximum swelling pressure Psmax decreases with increasing water content and reserved expansion deformation, especially for expansion ratio η from 24% to 37%. The reserved deformation has little effect on reducing Psmax when it is beyond 7% of the expansion rate. The specimen with low water content has a more homogeneous structure due to the significant expansion-filling effect, and the fracture and reorganization of the aggregates in the specimens with low water content cause the swelling pressure-time softening behavior. In addition, the proposed swelling pressure-time curve prediction model has a good prediction on the test results. If necessary, a deformation space of about 7% expansion rate is recommended to be reserved in the engineering to reduce the swelling pressure except for keeping a stable water content.
基金Funded by National Natural Science Foundation of China(No.52174206)Shaanxi Provincial Department of Education Youth Innovation Team Construction Scientific Research Plan Project(No.21JP074)Shaanxi Provincial Department of Education Youth Innovation Team Scientific Research Plan Project(No.22JP047)。
文摘Super absorbent resin(SAR)is prepared by aqueous high temperature polymerization using hydroxypropyl methylcellulose(HPMC)as monomer backbone material,acrylic acid(AA)and acrylamide(AM)as the graft copolymer monomer,potassium persulfate(KPS)as the initiator to generate free radicals,and N,N`-methylenebisacrylamide(MBA)as cross-linking agent for cross-linking reaction.Simutaneously,the influence of individual factors on the water absorption is investigated,and these factors are mainly AA,AM,KPS,MBA,HPMC,and reaction temperature.The optimized conditions are obtained by the experiment repeating for several times.The water absorption multiplicity and salt absorption multiplicity under the conditions are 782.4 and 132.5 g/g,respectivity.Furthermore,the effects of different temperatures and salt concentrations on its water absorption,as well as the swelling kinetics of SAR are studied.It is indicated the water-absorbing swelling process is mainly caused by the difference in water osmotic pressure and Na+concentration inside and outside the cross-linked molecular structure of the resin,which is not only consistent with the quasi-secondary kinetic model,but also with the Fick diffusion model.
基金supported by the Australian Research Council(Grant No.DP200101293)the National Natural Science Foundation of China(Grant No.42202286)the Zhejiang Collaborative Innovation Center for Prevention and Control of Mountain Geological Hazards(Grant No.PCMGH-2017-Z-02).
文摘Long-term permeability experiments have indicated that sorption-induced swelling can switch from internal to bulk depending on the evolutive sorption status.However,this sorption swelling switch mechanism has not been considered in current analytical permeability models.This study introduces a normalized sorption non-equilibrium index(SNEI)to characterize the sorption status,quantify the dynamical variations of matrix swelling accumulation and internal swelling partition,and formulate the sorption swelling switch model.The incorporation of this index into the extended total effective stress concept leads to an analytical transient coal permeability model.Model results show that the sorption swelling switch itself results in the permeability switch under stress-constrained conditions,while the confined bulk swelling suppresses the permeability recovery to the continuous reduction under displacement-constrained conditions.Model verifications show that current experimental observations correspond to the early stages of the transient process,and they could be extended to the whole process with these models.This study demonstrates the importance of the sorption swelling switch in determining permeability evolution using simple boundary conditions.It provides new insights into experimentally revealing the sorption swelling switch in the future,and underscores the requirement of a rigorous model for complex coupled processes in large-scale coal seams.
文摘Vulvar Crohn’s disease (VCD) is a rare complication of Crohn’s disease, especially in pediatric population. An early diagnosis can result difficult if the complication does not present in conjunction with the classic gastrointestinal symptoms that characterize this disease. In this study we present the case of a 12-year-old girl whose initial symptom of Crohn’s disease was a symptomatic vulvar swelling promoted by a rectovaginal fistula. We also provide an overview of Crohn’s disease and the vulvar changes found in the course of this disease.
基金Innovation Incentive Project:Science and Technology Innovation Incentive Project of Qiqihar City,Heilongjiang Province(No.CSFGG-2023210)。
文摘Objective:To observe the clinical effect of traditional Chinese medicine(TCM)on reducing swelling and pain in patients with mixed hemorrhoids.Methods:Sixty patients with mixed hemorrhoids who were admitted to the Hospital of Traditional Chinese Medicine of Qiqihar from January 2023 to January 2024 were selected and divided into two groups.The treatment group(n=30)was treated with mixed hemorrhoid ligation combined with traditional Chinese swelling and pain medicine,and the control group(n=30)was only treated with mixed hemorrhoid ligation.The pain level,edema score,and prognosis of the two groups after the intervention were analyzed.The clinical efficacy was used as the evaluation criterion to compare the clinical effects of different treatment options.Results:After the treatment,the pain score,edema score,and prognostic wound score of the treatment group were all lower than those of the control group(P 0.05).The total clinical effectiveness of the treatment group(100%)was higher than that of the control group(76.67%),(χ^(2)=4.2857,P<0.05).Conclusion:The application of traditional Chinese swelling and pain medicine in treating patients with mixed hemorrhoids effectively reduced the patient’s pain,reduced the degree of wound edema,promoted wound healing,and improved the patient’s prognosis.The curative effect was significant and had a positive impact.
基金support of the National Key Research and Development Program of China(Grant No.2019YFC1509901).
文摘Swelling geomaterials in northwestern and northeastern China are exposed to both seasonal wettingdrying(DW)and freezing-thawing(FT)processes.The influence of full-process wetting-dryingfreezing-thawing(WDFT)cycles on their hydro-mechanical behaviour has not been well investigated.In this study,a series of swelling and compression tests was conducted on Yanji weathered mudstone subjected to different WD,FT and WDFT processes and the effects of seasonal processes and cyclic number on the swelling strain,compression index,rebound index and hydraulic conductivity were experimentally determined.With the increasing WD,FT and WDFT cycles,the starting time of primary swelling decreased first due to the increasing water infiltration with the appearance of large pores,and then increased because of the decreasing swelling potential of compact aggregates after two cycles.Moreover,as the cyclic number increased,the final swelling strain declined.Upon loading,the specimens after cyclic processes exhibited a smaller compression index at low stresses due to their smaller interparticle distance after swelling,but a larger one owing to the collapse of large pores and cracks at high vertical stresses.After unloading,the rebound index decreased with the increase of cyclic number due to the irreversible collapse of large pores and cracks.The hydraulic conductivity increased with the increasing cyclic number at low vertical stresses(large void ratios).With the further increase of vertical stress,the increase of hydraulic conductivity induced by cyclic processes became indiscernible.Moreover,a comparison among three processes suggested that the WDFT process exerted a more pronounced influence on the hydro-mechanical behaviour of Yanji mudstone than the separate WD or FT process.
文摘The phenomena of shrinkage and swelling of clay induce damage to housing structures every year. Precipitation, climatic changes and drought are the cause of wall cracks due to subsidence or swelling of the supporting soil. This movement alters the balance between the soil and the structures. To explain this defection, the soil is made up of three elements: the solid, the liquid and the gas. Sometimes in a natural way or following a human intervention, one of these elements undergoes an abnormal variation that causes the loss of the balance between land and works. It is in this sense that this article deals on the one hand with the factors of predisposition and triggering of the phenomena of shrinkage-swelling of the clay soils of Diamniadio and on the other hand, the factors of aggravation linked to the lithological heterogeneity and the variation in the thickness of the layers susceptible to shrinkage-swelling. The studies carried out have enabled a deeper understanding of the behavior of expansive soils following their interactions with climate, vegetation, hydrology, hydrogeology, constructions among others, but also the influence of lateral and vertical variations of fine soil facies.
文摘In Senegal, the Diamniadio, Sebikhotane and Bargny sector contains clay soils that are problematic for construction. In order to have more information on the behavior of the clay soils of Diamniadio, free swelling tests followed by load-discharge cycles were carried out according to standard NF P 94-090-1. These tests were carried out using an Oedometric device on the three samples from the study site (sandy clays with calcareous concretion, marls with crumbs and laminated marls with attapulgite) to apprehend their swelling aspects in saturated conditions. For the free swelling test, a determination of the different swelling phases will be carried out followed by a comparison of the rate of evolution of the phases for the three samples from the site. In the same vein, the compressibility characteristics of the samples will also be provided from load-unload Oedometric tests. Thereafter, we proceed to a comparison of the void index at the initial state of the samples after two charge-discharge cycles and the influence of the cycles on the reorganization of the internal structure of the samples. These studies will provide more information on the swelling behavior of Diamniadio soils in the presence of water.
基金This work was financially supported by the National Natural Science Foundation of China(No.42102217)the University Synergy Innovation Program of Anhui Province(No.GXXT-2021-018)+3 种基金the Natural Science Research Project of Anhui University(No.KJ2020A0315No.KJ2020A0317)the Natural Science Foundation of Anhui Province(No.2108085MD134)the Foundation of State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum,Beijing(No.PRP/open-2005).
文摘Matrix swelling effect will cause the change of microstructure of coal reservoir and its permeability,which is the key factor affecting the engineering effect of CO_(2)-ECBM technology.The Sihe and Yuwu collieries are taken as research objects.Firstly,visualization reconstruction of coal reservoir is realized.Secondly,the evolution of the pore/fracture structures under different swelling contents is discussed.Then,the influence of matrix phase with different swelling contents on permeability is discussed.Finally,the mechanism of swelling effect during the CO_(2)-ECBM process is further discussed.The results show that the intra-matrix pores and matrix-edge fractures are the focus of this study,and the contacting area between matrix and pore/fracture is the core area of matrix swelling.The number of matrix particles decreases with the increase of size,and the distribution of which is isolated with small size and interconnected with large size.The swelling effect of matrix particles with larger size has a great influence on the pore/fracture structures.The number of connected pores/fractures is limited and only interconnected in a certain direction.With the increase of matrix swelling content,the number,porosity,width,fractal dimension,surface area and volume of pores/fractures decrease,and their negative contribution to absolute permeability increases from 0.368% to 0.633% and 0.868%-1.404%,respectively.With the increase of swelling content,the number of intra-matrix pores gradually decreases and the pore radius becomes shorter during the CO_(2)-ECBM process.The matrix continuously expands to the connected fractures,and the width of connected fractures gradually shorten.Under the influence of matrix swelling,the bending degree of fluid flow increases gradually,so the resistance of fluid migration increases and the permeability gradually decreases.This study shows that the matrix swelling effect is the key factor affecting CBM recovery,and the application of this effect in CO_(2)-ECBM process can be discussed.
文摘Hydrogels with their time-dependent intrinsic behaviors have recently been used widely in soft structures as sensors/actuators.One of the most interesting structures is the bilayer made up of hydrogels which may undergo swelling-induced bending.In this work,by proposing a semi-analytical method,the transient bending of hydrogel-based bilayers is investigated.Utilizing nonlinear solid mechanics,a robust semi-analytical solution is developed which captures the transient finite bending of hydrogel-based bilayers.Moreover,the multiphysics model of the hydrogels is implemented in the finite element method(FEM) framework to verify the developed semi-analytical procedure results.The effects of different material properties are investigated to illustrate the nonlinear behavior of these structures.The von-Mises stress contour extracted from FEM shows that the critical area of these soft structures is at the interface of the layers which experiences the maximum stress,and this area is most likely to rupture in large deformations.
基金support from the National Visiting Scholar Program for Key Young Teachers of Central and Western Universities,the Ministry of Education(19042)the Key Science and Technology Project of Henan Province(212102310064)the National Innovation and the Entrepreneurship Training Program for College Students,Ministry of Education(202111517002).
文摘In this study,hydrogels were prepared from municipal sludge to recycle and realize the value-added utilization of the carbon components in this abundant waste material.The carbon sources were extracted from the municipal sludge using synthesised nano CaO_(2)as an oxidant,and the carbon sources were graft copolymerised with acrylic acid monomer using N,N′-methylenebisacrylamide as a crosslinking agent and ammonium persulfate as an initiator.The factors influencing the hydrogel preparation were investigated by single-factor experiments.Based on the results of the single-factor experiments,a hydrogel with a swelling ratio of up to 19768.4%at 12 h was prepared with an oxidant dosage of 0.20 g,a monomer dosage of 5.8 g,a neutralisation degree of the monomer of 70%,an initiator dosage of 0.15 g,and a crosslinking agent dosage of 0.15 g.The hydrogel preparation conditions were optimized using the response surface method,and the interactions between the different reaction conditions were analysed to obtain the best preparation conditions.X-ray diffraction results showed that hydrogels were amorphous in structure.Scanning electron microscopy images showed that the SiO_(2)particles from the sludge acted as crosslinking points between different layers of hydrogel chains.The crosslinking polymerisation and crosslinking agent worked together to form hydrogels with an inorganic-organic double network structure,and this structure was highly stretchable,resulting in hydrogels with good swelling properties.
文摘A water-swelling material is one of the rubbery impermeable materials which mixed synthetic resin elastomers as a base material, high absorbency polymers, filler and solvents. In this study, swelling characteristics of the water-swelling material on the water polluted with COD and BOD, as an impermeable material at coastal landfill sites, are examined by laboratory swelling ratio test. Furthermore, the factor in which it influences the swelling pressure of water-swelling material is clarified by measuring the swelling pressure. As the results, the COD nor the BOD concentrations in the soaked water influence the swelling ratio of the water-swelling material. When the thicknesses of water-swelling material are 2 mm and 3 mm, the maximum swelling pressure of 0.5 MPa or more that corresponds to hydraulic pressure by depth of 50 m is possessed.
文摘Poly(methacrylic acid co-poloxamer) hydrogel networks were synthesized by free radical solution polymerization and their equilibrium swelling and solute permeation properties were characterized. These gels exhibited pH dependant swelling and solute diffusivity due to the formation or disruption of hydrogen bonded complexation between methacrylic acid (MAA) and etheric (EO). In neutral and basic conditions (above the swelling transition pH), the copolymer swelling was greatly higher than acid condition. In complexed hydrogels, the diffusion coefficients of vitamin B12 (VB12) were in the range of 10-10 to 10-7 cm2s-1; While in uncomplexed hydrogels, the values were about 210-6 cm2s-1. The comonomer composition and synthesis conditions have great effect on the structure, and thereby, swelling and solute diffusion characteristics of the resultant hydrogels. For the copolymers with composition of less than or more than 1:1 MAA/EO molar ratio, the plot of lnD vs 1/H-1 followed two different linear equations of 慺ree volume theory? respectively.
基金the funding support from Natural Sciences and Engineering Research Council of Canada (NSERC)
文摘Compacted bentonite-sand(B/S)mixtures have been used as a barrier material in engineered barrier systems(EBSs)of deep geological repositories(DGR)to store nuclear wastes.This study investigates the individual and combined effects of different chemical compositions of deep groundwaters(chemical factor)at potential repository sites in Canada(the Trenton and Guelph regions in Ontario),heat generated in DGRs(thermal factor),dry densities and mass ratios of bentonite and sand mixtures(physical factors)on the swelling behavior and ability of bentonite-based materials.In this study,swelling tests are conducted on B/S mixtures with different B/S mix ratios(20/80 to 70/30),compacted at different dry densities(ρd=1.6-2 g/cm^(3)),saturated with different types of water(distilled water and simulated deep groundwater of Trenton and Guelph)and exposed to different temperatures(20℃-80℃).Moreover,scanning electron microscopy(SEM)analyses,mercury intrusion porosimetry(MIP)tests and X-ray diffractometry(XRD)analyses are carried out to evaluate the morphological,microstructural and mineralogical characteristics of the B/S mixtures.The test results indicate that the swelling potential of the B/S mixtures is significantly affected by these physical and chemical factors as well as the combined effects of the chemical and thermal factors.A significant decrease in the swelling capacity is observed when the B/S materials are exposed to the aforementioned groundwaters.A large decrease in the swelling capacity is observed for higher bentonite content in the mixtures.Moreover,higher temperatures intensify the chemically-induced reduction of the swelling capacity of the B/S barrier materials.This decrease in the swelling capacity is caused by the chemical and/or microstructural changes of the materials.The results from this research will help engineers to design and build EBSs for DGRs with similar groundwater and thermal conditions.
基金supported by the Outstanding Youth Foundation of Hubei Province,China(Grant No.2017CFA056)the National Natural Science Foundation of China(Grant Nos.41672312 and 41972294).
文摘Cohesive non-swelling soil(CNS)cushion technology is widely used to solve swelling deformation problems in expansive soil areas.However,the swelling inhibition mechanism is still not fully understood.In this study,the inhibition effect on expansive soil using a CNS layer was studied by performing five types of laboratory model tests under unidirectional seepage.The results showed that CNS cushion technology produced a sound inhibition effect on the swelling characteristics of expansive soil.It was shown that the cations in the CNS layer moved downward and accumulated on the surface of solids and produced an electrical environment inside the expansive soil.In this process,the adsorbed hydrated cations participated in ion exchange with the expansive soil,leading to the modification effect on its swelling potential.Meanwhile,the adsorbed water membrane surrounding the expansive soil aggregates formed by the hydrated cations obstructed further adsorption of water molecules,which inhibited the swelling development of expansive soil.Therefore,the swelling inhibition mechanism can be attributed to three factors:(i)modification effect,(ii)electrical environment,and(iii)deadweight of the CNS layer.The combined contribution of modification effect and electrical environment can be considered as an electric charge effect,which mainly controls the swelling characteristics of expansive soil.