The composite field multiplication is an important and complex module in symmetric cipher algorithms, and its realization performance directly restricts the processing speed of symmetric cipher algorithms. Based on th...The composite field multiplication is an important and complex module in symmetric cipher algorithms, and its realization performance directly restricts the processing speed of symmetric cipher algorithms. Based on the characteristics of composite field multiplication in symmetric cipher algorithms and the realization principle of its reconfigurable architectures, this paper describes the reconfigurable composite field multiplication over GF((2^8)k) (k=1,2,3,4) in RISC (reduced instruction set computer) processor and VLIW (very long instruction word) processor architecture, respectively. Through configuration, the architectures can realize the composite field multiplication over GF(2^8), GF ((2^8)2), GF((28)3) and GF((28)4) flexibly and efficiently. We simulated the function of circuits and synthesized the reconfigurable design based on the 0.18 μm CMOS (complementary metal oxide semiconductor) standard cell library and the comparison with other same kind designs. The result shows that the reconfigurable design proposed in the paper can provide higher efficiency under the premise of flexibility.展开更多
As the wireless sensor networks are easily deployable, the volume of sensor applications has been increased widely in various fields of military and commercial areas. In order to attain security on the data exchanged ...As the wireless sensor networks are easily deployable, the volume of sensor applications has been increased widely in various fields of military and commercial areas. In order to attain security on the data exchanged over the network, a hybrid cryptographic mechanism which includes both symmetric and asymmetric cryptographic functions is used. The public key cryptographic ECC security implementation in this paper performs a matrix mapping of data’s at the points on the elliptical curve, which are further encoded using the private symmetric cipher cryptographic algorithm. This security enhancement with the hybrid mechanism of ECC and symmetric cipher cryptographic scheme achieves efficiency in energy conservation of about 7% and 4% compared to the asymmetric and symmetric cipher security implementations in WSN.展开更多
Smart and interconnected devices can generate meaningful patient data and exchange it automatically without any human intervention in order to realize the Internet of Things(IoT)in healthcare(HIoT).Due to more and mor...Smart and interconnected devices can generate meaningful patient data and exchange it automatically without any human intervention in order to realize the Internet of Things(IoT)in healthcare(HIoT).Due to more and more online security and data hijacking attacks,the confidentiality,integrity and availability of data are considered serious issues in HIoT applications.In this regard,lightweight block ciphers(LBCs)are promising in resourceconstrained environment where security is the primary consideration.The prevalent challenge while designing an LBC for the HIoT environment is how to ascertain platform performance,cost,and security.Most of the existing LBCs primarily focus on text data or grayscale images.The main focus of this paper is about securing color images in a cost-effective way.We emphasis high confidentiality of color images captured by cameras in resource-constrained smartphones,and high confidentiality of sensitive images transmitted by low-power sensors in IoT systems.In order to reduce computational complexity and simulation time,the proposed Lightweight Symmetric Block Cipher(LSBC)exploits chaos-based confusion-diffusion operations at the inter-block level using a single round.The strength of LSBC is assessed by cryptanalysis,while it is ranked by comparing it to other privacy-preserving schemes.Our results show that the proposed cipher produces promising results in terms of key sensitivity and differential attacks,which proves that our LSBC is a good candidate for image security in HIoT.展开更多
基金Supported by the National Natural Science Foundation of China(61202492,61309022,61309008)the Natural Science Foundation for Young of Shaanxi Province(2013JQ8013)
文摘The composite field multiplication is an important and complex module in symmetric cipher algorithms, and its realization performance directly restricts the processing speed of symmetric cipher algorithms. Based on the characteristics of composite field multiplication in symmetric cipher algorithms and the realization principle of its reconfigurable architectures, this paper describes the reconfigurable composite field multiplication over GF((2^8)k) (k=1,2,3,4) in RISC (reduced instruction set computer) processor and VLIW (very long instruction word) processor architecture, respectively. Through configuration, the architectures can realize the composite field multiplication over GF(2^8), GF ((2^8)2), GF((28)3) and GF((28)4) flexibly and efficiently. We simulated the function of circuits and synthesized the reconfigurable design based on the 0.18 μm CMOS (complementary metal oxide semiconductor) standard cell library and the comparison with other same kind designs. The result shows that the reconfigurable design proposed in the paper can provide higher efficiency under the premise of flexibility.
文摘As the wireless sensor networks are easily deployable, the volume of sensor applications has been increased widely in various fields of military and commercial areas. In order to attain security on the data exchanged over the network, a hybrid cryptographic mechanism which includes both symmetric and asymmetric cryptographic functions is used. The public key cryptographic ECC security implementation in this paper performs a matrix mapping of data’s at the points on the elliptical curve, which are further encoded using the private symmetric cipher cryptographic algorithm. This security enhancement with the hybrid mechanism of ECC and symmetric cipher cryptographic scheme achieves efficiency in energy conservation of about 7% and 4% compared to the asymmetric and symmetric cipher security implementations in WSN.
基金This work was supported by the King Saud University (in Riyadh, SaudiArabia) through the Researcher Supporting Project Number (RSP–2021/387).
文摘Smart and interconnected devices can generate meaningful patient data and exchange it automatically without any human intervention in order to realize the Internet of Things(IoT)in healthcare(HIoT).Due to more and more online security and data hijacking attacks,the confidentiality,integrity and availability of data are considered serious issues in HIoT applications.In this regard,lightweight block ciphers(LBCs)are promising in resourceconstrained environment where security is the primary consideration.The prevalent challenge while designing an LBC for the HIoT environment is how to ascertain platform performance,cost,and security.Most of the existing LBCs primarily focus on text data or grayscale images.The main focus of this paper is about securing color images in a cost-effective way.We emphasis high confidentiality of color images captured by cameras in resource-constrained smartphones,and high confidentiality of sensitive images transmitted by low-power sensors in IoT systems.In order to reduce computational complexity and simulation time,the proposed Lightweight Symmetric Block Cipher(LSBC)exploits chaos-based confusion-diffusion operations at the inter-block level using a single round.The strength of LSBC is assessed by cryptanalysis,while it is ranked by comparing it to other privacy-preserving schemes.Our results show that the proposed cipher produces promising results in terms of key sensitivity and differential attacks,which proves that our LSBC is a good candidate for image security in HIoT.