Using the method of Clerc and Stein study the multipliers of spherical Fourier transform on symmetric space to proof the multipliers theory for the space SL(3,H)/SP(3), completely avoid the complex theory of Anker, an...Using the method of Clerc and Stein study the multipliers of spherical Fourier transform on symmetric space to proof the multipliers theory for the space SL(3,H)/SP(3), completely avoid the complex theory of Anker, and we have gain the same result. Key words Riemannian symmetric space SL(3,H)/SP(3) - multipliers - spherical Fourier transform - invariant differential operator CLC number O 152.5 - O 186.12 Biography: LIAN Bao-sheng (1973-), male, Master, research direction: Li group and Lie algebra.展开更多
In this paper, some common fixed point theorems for general occasionally weakly compatible selfmaps and non-selfmaps on cone symmetric spaces were proved. The interesting point of this paper is that we do not assume t...In this paper, some common fixed point theorems for general occasionally weakly compatible selfmaps and non-selfmaps on cone symmetric spaces were proved. The interesting point of this paper is that we do not assume that the cone is solid. Our results generalize and complete the corresponding results in [9-15].展开更多
A smooth curve on a homogeneous manifold G/H is called a Riemannian equigeodesic if it is a homogeneous geodesic for any G-invariant Riemannian metric.The homogeneous manifold G/H is called Riemannian equigeodesic,if ...A smooth curve on a homogeneous manifold G/H is called a Riemannian equigeodesic if it is a homogeneous geodesic for any G-invariant Riemannian metric.The homogeneous manifold G/H is called Riemannian equigeodesic,if for any x∈G/H and any nonzero y∈Tx(G/H),there exists a Riemannian equigeodesic c(t) with c(0)=x and ■(0)=y.These two notions can be naturally transferred to the Finsler setting,which provides the definitions for Finsler equigeodesics and Finsler equigeodesic spaces.We prove two classification theorems for Riemannian equigeodesic spaces and Finsler equigeodesic spaces,respectively.Firstly,a homogeneous manifold G/H with a connected simply connected quasi compact G and a connected H is Riemannian equigeodesic if and only if it can be decomposed as a product of Euclidean factors and compact strongly isotropy irreducible factors.Secondly,a homogeneous manifold G/H with a compact semisimple G is Finsler equigeodesic if and only if it can be locally decomposed as a product,in which each factor is Spin(7)/G2,G2/SU (3) or a symmetric space of compact type.These results imply that the symmetric space and the strongly isotropy irreducible space of compact type can be interpreted by equigeodesic properties.As an application,we classify the homogeneous manifold G/H with a compact semisimple G such that all the G-invariant Finsler metrics on G/H are Berwald.It suggests a new project in homogeneous Finsler geometry,i.e.,to systematically study the homogeneous manifold G/H on which all the G-invariant Finsler metrics satisfy a certain geometric property.展开更多
Let X be an irreducible Hermitian symmetric space of compact type(IHSS for short).In this paper,we give the irreducible decomposition of SymrTX.As a by-product,we give a cohomological characterization of the rank of X...Let X be an irreducible Hermitian symmetric space of compact type(IHSS for short).In this paper,we give the irreducible decomposition of SymrTX.As a by-product,we give a cohomological characterization of the rank of X.Moreover,we introduce pseudoeffective thresholds to measure the bigness of tangent bundles of smooth complex projective varieties precisely and calculate them for irreducible Hermitian symmetric spaces of compact type.展开更多
By making use of the classification of real simple Lie algebra, we get the maximum of the squared length of restricted roots case by case, and thus get the upper bounds of sectional curvature for irreducible Riemannia...By making use of the classification of real simple Lie algebra, we get the maximum of the squared length of restricted roots case by case, and thus get the upper bounds of sectional curvature for irreducible Riemannian symmetric spaces of compact type. As an application, this paper verifies Sampson's conjecture in most cases for irreducible Riemannian symmetric spaces of noncompact type.展开更多
Let Pt denote the tubular hypersurface of radius t around a given compatible submanifold in a symmetric space of arbitrary rank. The authors will obtain some relations between the integrated mean curvatures of P, and ...Let Pt denote the tubular hypersurface of radius t around a given compatible submanifold in a symmetric space of arbitrary rank. The authors will obtain some relations between the integrated mean curvatures of P, and their derivatives with respect to f. Moreover, the authors will emphasize the differences between the results obtained for rank one and arbitrary rank symmetric spaces.展开更多
In this paper, we study homogeneous Einstein-like metrics on the compact irreducible symmetric space M, which is not isometric to a compact Lie group and has rank greater than 1. Whenever there exists a closed proper ...In this paper, we study homogeneous Einstein-like metrics on the compact irreducible symmetric space M, which is not isometric to a compact Lie group and has rank greater than 1. Whenever there exists a closed proper subgroup G′ of G = Isom_0(M) acting transitively on M, we find all the G′-invariant A-metrics and B-metrics on M. More precisely, we prove that G′-invariant metrics on M must be A-metrics, and G′-invariant B-metrics on M are always Einstein.展开更多
Let G be a complex semisimple algebraic group and X be a complex symmetric homogeneous G-variety. Assume that both G, X as well as the G-action on X are defined over real numbers.Then G(R) acts on X(R) with finite...Let G be a complex semisimple algebraic group and X be a complex symmetric homogeneous G-variety. Assume that both G, X as well as the G-action on X are defined over real numbers.Then G(R) acts on X(R) with finitely many orbits. We describe these orbits in combinatorial terms using Galois cohomology, thus providing a patch to a result of Borel and Ji.展开更多
The authors derive a formula for the volume of a compact domain in a symmetric space from normal sections through a special submanifold in the symmetric space.This formula generalizes the volume of classical domains a...The authors derive a formula for the volume of a compact domain in a symmetric space from normal sections through a special submanifold in the symmetric space.This formula generalizes the volume of classical domains as tubes or domains given as motions along the submanifold.Finally,some stereological considerations regarding this formula are provided.展开更多
Given a compact symmetric space, M, we obtain the mean exit time function from a principal orbit, for a Brownian particle starting and moving in a generalized ball whose boundary is the principal orbit. We also obtain...Given a compact symmetric space, M, we obtain the mean exit time function from a principal orbit, for a Brownian particle starting and moving in a generalized ball whose boundary is the principal orbit. We also obtain the mean exit time flmction of a tube of radius r around special totally geodesic submanifolds P of M. Finally we give a comparison result for the mean exit time function of tubes around submanifolds in Riemannian manifolds, using these totally geodesic submanifolds in compact symmetric spaces as a model.展开更多
This note investigates the multiplicity problem of principal curvatures of equifocal hypersurfaces in simply connected rank 1 symmetric spaces. Using Clifford representation theory, and the author also constructs infi...This note investigates the multiplicity problem of principal curvatures of equifocal hypersurfaces in simply connected rank 1 symmetric spaces. Using Clifford representation theory, and the author also constructs infinitely many equifocal hypersurfaces in the symmetric spaces.展开更多
We prove the following vanishing theorem. Let M be an irreducible symmetric space of noncompact type whose dimension exceeds 2 and M ≠SO0(2, 2)/SO(2) × SO(2). Let π : E →* M be any vector bundle. Then ...We prove the following vanishing theorem. Let M be an irreducible symmetric space of noncompact type whose dimension exceeds 2 and M ≠SO0(2, 2)/SO(2) × SO(2). Let π : E →* M be any vector bundle. Then any E-valued L2 harmonic 1-form over M vanishes. In particular we get the vanishing theorem for harmonic maps from irreducible symmetric spaces of noncompact type.展开更多
Let G/K be the noncompact Riemannian symmetric space SL(3, H)/Sp(3). We shall prove in this paper that for f∈L^P(SL(3, H)/Sp(3)), 1≤p≤2. the Riesz means of order z of f with respect to the eigenfunctions expansion ...Let G/K be the noncompact Riemannian symmetric space SL(3, H)/Sp(3). We shall prove in this paper that for f∈L^P(SL(3, H)/Sp(3)), 1≤p≤2. the Riesz means of order z of f with respect to the eigenfunctions expansion of Laplace operator almost everywhere converge to f for Rez】б(n, p). The critical index δ(n,p) is the same as in the classical Stein’s result for Euclidean space. and as in the noncompact symmetric spaces of rank one and of complex type.展开更多
In this paper, the partial positivity (resp., negativity) of the curvature of all irreducible Riemannian symmetric spaces is determined. From the classifications of abstract root systems and maximal subsystems, the ...In this paper, the partial positivity (resp., negativity) of the curvature of all irreducible Riemannian symmetric spaces is determined. From the classifications of abstract root systems and maximal subsystems, the author gives the calculations for symmetric spaces both in classical types and in exceptional types.展开更多
In the paper [M. Akbar and R.G. Cai, Commun. Theor. Phys. 45 (2006) 95], a complete classification is provided with at least one component of the vector field V is zero. In this paper, I consider the vector field V ...In the paper [M. Akbar and R.G. Cai, Commun. Theor. Phys. 45 (2006) 95], a complete classification is provided with at least one component of the vector field V is zero. In this paper, I consider the vector field V with all non-zero components and the static space times with maximal symmetric transverse spaces are classified according to their Ricci collineations. These are investigated for non-degenerate Ricci tensor det R ≠0. It turns out that the only collineations admitted by these spaces can be ten, seven, six or four. It also covers our previous results as a spacial case. Some new metrics admitting proper Ricci collineations are also investigated.展开更多
We consider the question of characterizing compact quotients of the complex 2-ball by curvature conditions, which improve the known results. Moreover, we also give curvature conditions such that a compact Kaehler-Eins...We consider the question of characterizing compact quotients of the complex 2-ball by curvature conditions, which improve the known results. Moreover, we also give curvature conditions such that a compact Kaehler-Einstein surface is bi-holomorphic to a locally symmetric space.展开更多
A complete classification of static space times with maximal symmetric transverse spaces is provided, according to their Ricci collineations. The classification is made when one component of Ricci collineation vector ...A complete classification of static space times with maximal symmetric transverse spaces is provided, according to their Ricci collineations. The classification is made when one component of Ricci collineation vector field V is non-zero (cases 1 - 4), two components of V are non-zero (cases 5 - 10), and three components of V are non-zero (cases 11 - 14), respectlvily. Both non-degenerate (detRab ≠ 0) as well as the degenerate (det Rab = 0) cases are discussed and some new metrics are found.展开更多
The author studies the oscillating multipliers on Riemannian symmetric spaceSL(3,IH)/Sp(3).The results are analogous to that for Riemannian symmetric spaces of rank one and of complex type.
文摘Using the method of Clerc and Stein study the multipliers of spherical Fourier transform on symmetric space to proof the multipliers theory for the space SL(3,H)/SP(3), completely avoid the complex theory of Anker, and we have gain the same result. Key words Riemannian symmetric space SL(3,H)/SP(3) - multipliers - spherical Fourier transform - invariant differential operator CLC number O 152.5 - O 186.12 Biography: LIAN Bao-sheng (1973-), male, Master, research direction: Li group and Lie algebra.
基金Supported by the National Natural Science Foundation of China(10671167, 10771212) Acknowledgement The authors would like to thank Professor B E Rhoades for providing us the reprint of [3].
文摘In this paper, some common fixed point theorems for general occasionally weakly compatible selfmaps and non-selfmaps on cone symmetric spaces were proved. The interesting point of this paper is that we do not assume that the cone is solid. Our results generalize and complete the corresponding results in [9-15].
基金supported by National Natural Science Foundation of China (Grant Nos.12131012, 12001007 and 11821101)Beijing Natural Science Foundation (Grant No. 1222003)Natural Science Foundation of Anhui Province (Grant No. 1908085QA03)。
文摘A smooth curve on a homogeneous manifold G/H is called a Riemannian equigeodesic if it is a homogeneous geodesic for any G-invariant Riemannian metric.The homogeneous manifold G/H is called Riemannian equigeodesic,if for any x∈G/H and any nonzero y∈Tx(G/H),there exists a Riemannian equigeodesic c(t) with c(0)=x and ■(0)=y.These two notions can be naturally transferred to the Finsler setting,which provides the definitions for Finsler equigeodesics and Finsler equigeodesic spaces.We prove two classification theorems for Riemannian equigeodesic spaces and Finsler equigeodesic spaces,respectively.Firstly,a homogeneous manifold G/H with a connected simply connected quasi compact G and a connected H is Riemannian equigeodesic if and only if it can be decomposed as a product of Euclidean factors and compact strongly isotropy irreducible factors.Secondly,a homogeneous manifold G/H with a compact semisimple G is Finsler equigeodesic if and only if it can be locally decomposed as a product,in which each factor is Spin(7)/G2,G2/SU (3) or a symmetric space of compact type.These results imply that the symmetric space and the strongly isotropy irreducible space of compact type can be interpreted by equigeodesic properties.As an application,we classify the homogeneous manifold G/H with a compact semisimple G such that all the G-invariant Finsler metrics on G/H are Berwald.It suggests a new project in homogeneous Finsler geometry,i.e.,to systematically study the homogeneous manifold G/H on which all the G-invariant Finsler metrics satisfy a certain geometric property.
文摘Let X be an irreducible Hermitian symmetric space of compact type(IHSS for short).In this paper,we give the irreducible decomposition of SymrTX.As a by-product,we give a cohomological characterization of the rank of X.Moreover,we introduce pseudoeffective thresholds to measure the bigness of tangent bundles of smooth complex projective varieties precisely and calculate them for irreducible Hermitian symmetric spaces of compact type.
文摘By making use of the classification of real simple Lie algebra, we get the maximum of the squared length of restricted roots case by case, and thus get the upper bounds of sectional curvature for irreducible Riemannian symmetric spaces of compact type. As an application, this paper verifies Sampson's conjecture in most cases for irreducible Riemannian symmetric spaces of noncompact type.
文摘Let Pt denote the tubular hypersurface of radius t around a given compatible submanifold in a symmetric space of arbitrary rank. The authors will obtain some relations between the integrated mean curvatures of P, and their derivatives with respect to f. Moreover, the authors will emphasize the differences between the results obtained for rank one and arbitrary rank symmetric spaces.
基金supported by National Natural Science Foundation of China (Grant Nos.11871282, 11571339 and 11401560)。
文摘In this paper, we study homogeneous Einstein-like metrics on the compact irreducible symmetric space M, which is not isometric to a compact Lie group and has rank greater than 1. Whenever there exists a closed proper subgroup G′ of G = Isom_0(M) acting transitively on M, we find all the G′-invariant A-metrics and B-metrics on M. More precisely, we prove that G′-invariant metrics on M must be A-metrics, and G′-invariant B-metrics on M are always Einstein.
基金partially supported by the Russian Foundation for Basic Research(Grant No.16-01-00818)
文摘Let G be a complex semisimple algebraic group and X be a complex symmetric homogeneous G-variety. Assume that both G, X as well as the G-action on X are defined over real numbers.Then G(R) acts on X(R) with finitely many orbits. We describe these orbits in combinatorial terms using Galois cohomology, thus providing a patch to a result of Borel and Ji.
基金Project supported by the Spanish Ministry of Science and Technology Grants MTM2005-O8689-G02-02 and MTM 2004-06015-C02-01.
文摘The authors derive a formula for the volume of a compact domain in a symmetric space from normal sections through a special submanifold in the symmetric space.This formula generalizes the volume of classical domains as tubes or domains given as motions along the submanifold.Finally,some stereological considerations regarding this formula are provided.
基金Work partially supported by a DGES Grant BSA2001-0803-C02-02
文摘Given a compact symmetric space, M, we obtain the mean exit time function from a principal orbit, for a Brownian particle starting and moving in a generalized ball whose boundary is the principal orbit. We also obtain the mean exit time flmction of a tube of radius r around special totally geodesic submanifolds P of M. Finally we give a comparison result for the mean exit time function of tubes around submanifolds in Riemannian manifolds, using these totally geodesic submanifolds in compact symmetric spaces as a model.
基金project supported by the National Natural Science Foundation of China (No.19925104), RFDP and the Qiu-Shi Science and Technolog
文摘This note investigates the multiplicity problem of principal curvatures of equifocal hypersurfaces in simply connected rank 1 symmetric spaces. Using Clifford representation theory, and the author also constructs infinitely many equifocal hypersurfaces in the symmetric spaces.
文摘We prove the following vanishing theorem. Let M be an irreducible symmetric space of noncompact type whose dimension exceeds 2 and M ≠SO0(2, 2)/SO(2) × SO(2). Let π : E →* M be any vector bundle. Then any E-valued L2 harmonic 1-form over M vanishes. In particular we get the vanishing theorem for harmonic maps from irreducible symmetric spaces of noncompact type.
基金Partially supported by National Natural Science Foundation of China
文摘Let G/K be the noncompact Riemannian symmetric space SL(3, H)/Sp(3). We shall prove in this paper that for f∈L^P(SL(3, H)/Sp(3)), 1≤p≤2. the Riesz means of order z of f with respect to the eigenfunctions expansion of Laplace operator almost everywhere converge to f for Rez】б(n, p). The critical index δ(n,p) is the same as in the classical Stein’s result for Euclidean space. and as in the noncompact symmetric spaces of rank one and of complex type.
文摘In this paper, the partial positivity (resp., negativity) of the curvature of all irreducible Riemannian symmetric spaces is determined. From the classifications of abstract root systems and maximal subsystems, the author gives the calculations for symmetric spaces both in classical types and in exceptional types.
文摘In the paper [M. Akbar and R.G. Cai, Commun. Theor. Phys. 45 (2006) 95], a complete classification is provided with at least one component of the vector field V is zero. In this paper, I consider the vector field V with all non-zero components and the static space times with maximal symmetric transverse spaces are classified according to their Ricci collineations. These are investigated for non-degenerate Ricci tensor det R ≠0. It turns out that the only collineations admitted by these spaces can be ten, seven, six or four. It also covers our previous results as a spacial case. Some new metrics admitting proper Ricci collineations are also investigated.
基金supported by National Natural Science Foundation of China (Grant No.1131008)partially by National Science Foundation of USA
文摘We consider the question of characterizing compact quotients of the complex 2-ball by curvature conditions, which improve the known results. Moreover, we also give curvature conditions such that a compact Kaehler-Einstein surface is bi-holomorphic to a locally symmetric space.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10325525 and 90403029, and Ministry of Science and Technology of China under Grant No. TG1999075401
文摘A complete classification of static space times with maximal symmetric transverse spaces is provided, according to their Ricci collineations. The classification is made when one component of Ricci collineation vector field V is non-zero (cases 1 - 4), two components of V are non-zero (cases 5 - 10), and three components of V are non-zero (cases 11 - 14), respectlvily. Both non-degenerate (detRab ≠ 0) as well as the degenerate (det Rab = 0) cases are discussed and some new metrics are found.
文摘The author studies the oscillating multipliers on Riemannian symmetric spaceSL(3,IH)/Sp(3).The results are analogous to that for Riemannian symmetric spaces of rank one and of complex type.