A Direct Numerical Simulation (DNS) scheme for solving the temporal-spatial multiscale problem of sympathetic detonation is proposed. According to the physical and chemical properties, the SD process is divided into t...A Direct Numerical Simulation (DNS) scheme for solving the temporal-spatial multiscale problem of sympathetic detonation is proposed. According to the physical and chemical properties, the SD process is divided into two stages in the numerical simulation. Two different grid sizes are used in the two stages to improve calculation accuracy and efficiency. The local Level Set Method is used to accurately track the multi-material interface, and the Harten Lax and van Leer Contact (HLLC) method is used to solve local Riemann problem. Based on the computing method mentioned above, choosing the high evolution Weighted Essentially Non-Oscillatory (WENO) scheme for the spatial discretization of governing equations in alliance with Total Variation Diminishing (TVD) Runge-Kutta for time discretization, the Eulerian code of SD is developed. It solves the data interaction between the two solvers with variable grid size and time step, and realizes the three-dimensional parallel computing of SD. Composition B is taken as the research object. The processes of SD in different stand-off distances are analyzed. The transmission and safety distances of Composition B are given. The test under the same conditions is designed to verify the numerical simulation. The numerical simulation results are in good agreement with the experiment, which proves the accuracy and feasibility of the numerical method.展开更多
By means of researching into sympathetic detonation of blasting detonators in air, the regular patterns are concluded from blasting detonators interaction with the shock loading. The aerial distribution of initiating ...By means of researching into sympathetic detonation of blasting detonators in air, the regular patterns are concluded from blasting detonators interaction with the shock loading. The aerial distribution of initiating ability of detonators looks like a butterfly. The initiating ability mainly consists of shock wave, explosive gases and fliers. But fundamental questions remain. When does shock wave take the leading role? When and how does the explosive gases or the fliers take function? For those questions, there is less quantitative research. Through the theoretic deduction of the overpressure, the energy calculation of fliers and the experiment of sympathetic detonation of detonators, we can learn the sympathetic detonation distances of several kinds of detonators and make an inquiry into the lateral initiating regulations of detonators. So, we can provide the base data for the research into no sympathetic detonation of herd blasting detonators and then control the detonation between them. Then we can make full use of detonators and reduce the frequency of accidents caused by detonators.展开更多
基金This work was supported by the National Natural Science Foundation of China[11732003,U1830139].
文摘A Direct Numerical Simulation (DNS) scheme for solving the temporal-spatial multiscale problem of sympathetic detonation is proposed. According to the physical and chemical properties, the SD process is divided into two stages in the numerical simulation. Two different grid sizes are used in the two stages to improve calculation accuracy and efficiency. The local Level Set Method is used to accurately track the multi-material interface, and the Harten Lax and van Leer Contact (HLLC) method is used to solve local Riemann problem. Based on the computing method mentioned above, choosing the high evolution Weighted Essentially Non-Oscillatory (WENO) scheme for the spatial discretization of governing equations in alliance with Total Variation Diminishing (TVD) Runge-Kutta for time discretization, the Eulerian code of SD is developed. It solves the data interaction between the two solvers with variable grid size and time step, and realizes the three-dimensional parallel computing of SD. Composition B is taken as the research object. The processes of SD in different stand-off distances are analyzed. The transmission and safety distances of Composition B are given. The test under the same conditions is designed to verify the numerical simulation. The numerical simulation results are in good agreement with the experiment, which proves the accuracy and feasibility of the numerical method.
文摘By means of researching into sympathetic detonation of blasting detonators in air, the regular patterns are concluded from blasting detonators interaction with the shock loading. The aerial distribution of initiating ability of detonators looks like a butterfly. The initiating ability mainly consists of shock wave, explosive gases and fliers. But fundamental questions remain. When does shock wave take the leading role? When and how does the explosive gases or the fliers take function? For those questions, there is less quantitative research. Through the theoretic deduction of the overpressure, the energy calculation of fliers and the experiment of sympathetic detonation of detonators, we can learn the sympathetic detonation distances of several kinds of detonators and make an inquiry into the lateral initiating regulations of detonators. So, we can provide the base data for the research into no sympathetic detonation of herd blasting detonators and then control the detonation between them. Then we can make full use of detonators and reduce the frequency of accidents caused by detonators.