The theoretic solution for rectangular thin plate on foundation with four edges free is derived by symplectic geometry method. In the analysis proceeding, the elastic foundation is presented by the Winkler model. Firs...The theoretic solution for rectangular thin plate on foundation with four edges free is derived by symplectic geometry method. In the analysis proceeding, the elastic foundation is presented by the Winkler model. Firstly, the basic equations for elastic thin plate are transferred into Hamilton canonical equations. The symplectic geometry method is used to separate the whole variables and eigenvalues are obtained simultaneously. Finally, according to the method of eigen function expansion, the explicit solution for rectangular thin plate on foundation with the boundary conditions of four edges frees are developed. Since the basic elasticity equations of thin plate are only used and it is not need to select the deformation function arbitrarily. Therefore, the solution is theoretical and reasonable. In order to show the correction of formulations derived, a numerical example is given to demonstrate the accuracy and convergence of the current solution.展开更多
This paper presents the analytic solution for Reissner plate bending derived by the symplectic geometry approach.Firstly,the basic equations for Reissner plate are transferred into Hamilton canonical equations.And the...This paper presents the analytic solution for Reissner plate bending derived by the symplectic geometry approach.Firstly,the basic equations for Reissner plate are transferred into Hamilton canonical equations.And then the whole state variables are separated.Finally,the solution is obtained according to the method of eigenfunction expansion in the symplectic geometry.Only the basic elasticity equations of Reissner plate are used in the present study and the pre-selection of the deformation function is abandoned,which is requisite in classical solution methods.Therefore,the utilized approach is completely reasonable and theoretical.To verify the accuracy and validity of the formulations derived,the numerical results are presented to compare with those available in the open literatures.展开更多
文摘The theoretic solution for rectangular thin plate on foundation with four edges free is derived by symplectic geometry method. In the analysis proceeding, the elastic foundation is presented by the Winkler model. Firstly, the basic equations for elastic thin plate are transferred into Hamilton canonical equations. The symplectic geometry method is used to separate the whole variables and eigenvalues are obtained simultaneously. Finally, according to the method of eigen function expansion, the explicit solution for rectangular thin plate on foundation with the boundary conditions of four edges frees are developed. Since the basic elasticity equations of thin plate are only used and it is not need to select the deformation function arbitrarily. Therefore, the solution is theoretical and reasonable. In order to show the correction of formulations derived, a numerical example is given to demonstrate the accuracy and convergence of the current solution.
文摘This paper presents the analytic solution for Reissner plate bending derived by the symplectic geometry approach.Firstly,the basic equations for Reissner plate are transferred into Hamilton canonical equations.And then the whole state variables are separated.Finally,the solution is obtained according to the method of eigenfunction expansion in the symplectic geometry.Only the basic elasticity equations of Reissner plate are used in the present study and the pre-selection of the deformation function is abandoned,which is requisite in classical solution methods.Therefore,the utilized approach is completely reasonable and theoretical.To verify the accuracy and validity of the formulations derived,the numerical results are presented to compare with those available in the open literatures.