In this paper, a new Banach space ZH is defined, and it is proved that there is completeness of eigenfunction system (symplectic orthogonal system) of a class of Hamiltonian system in ZH space. We have also proved the...In this paper, a new Banach space ZH is defined, and it is proved that there is completeness of eigenfunction system (symplectic orthogonal system) of a class of Hamiltonian system in ZH space. We have also proved the following results: ZH space can be continuously imbedded to L-2[0,1] X L-2[0,1], but ZH not equal L-2[0,1] X L-1[0,1].展开更多
The eigenvalue problem of the Hamiltonian operator associated with plane elasticity problems is investigated.The eigenfunctions of the operator are directly solved with mixed boundary conditions for the displacement a...The eigenvalue problem of the Hamiltonian operator associated with plane elasticity problems is investigated.The eigenfunctions of the operator are directly solved with mixed boundary conditions for the displacement and stress in a rectangular region.The completeness of the eigenfunctions is then proved,providing the feasibility of using separation of variables to solve the problems.A general solution is obtained with the symplectic eigenfunction expansion theorem.展开更多
The completeness theorem of the eigenfunction systems for the product of two 2 × 2 symmetric operator matrices is proved. The result is applied to 4 × 4 infinite-dimensional Hamiltonian operators. A modified...The completeness theorem of the eigenfunction systems for the product of two 2 × 2 symmetric operator matrices is proved. The result is applied to 4 × 4 infinite-dimensional Hamiltonian operators. A modified method of separation of variables is proposed for a separable Hamiltonian system. As an application of the theorem, the general solutions for the plate bending equation and the free vibration of rectangular thin plates are obtained. Finally, a numerical test is analysed to show the correctness of the results.展开更多
The eigenvalue problem for the Hamiltonian operator associated with the mathematical model for the deflection of a thin elastic plate is investigated.First,the problem for a rectangular plate with simply supported edg...The eigenvalue problem for the Hamiltonian operator associated with the mathematical model for the deflection of a thin elastic plate is investigated.First,the problem for a rectangular plate with simply supported edges is solved directly.Then,the completeness of the eigenfunctions is proved,thereby demonstrating the feasibility of using separation of variables to solve the problem. Finally,the general solution is obtained by using the proved expansion theorem.展开更多
Over a field of characteristic p>0,the first cohomology of the orthogonal symplectic Lie superalgebra osp(1,2)with coefficients in baby Verma modules and simple modules is determined by use of the weight space deco...Over a field of characteristic p>0,the first cohomology of the orthogonal symplectic Lie superalgebra osp(1,2)with coefficients in baby Verma modules and simple modules is determined by use of the weight space decompositions of these modules relative to a Cartan subalgebra of osp(1,2).As a byproduct,the first cohomology of osp(1,2)with coefficients in the restricted enveloping algebra(under the adjoint action)is not trivial.展开更多
文摘In this paper, a new Banach space ZH is defined, and it is proved that there is completeness of eigenfunction system (symplectic orthogonal system) of a class of Hamiltonian system in ZH space. We have also proved the following results: ZH space can be continuously imbedded to L-2[0,1] X L-2[0,1], but ZH not equal L-2[0,1] X L-1[0,1].
基金supported by the National Natural Science Foundation of China(No.10962004)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20070126002)the Natural Science Foundation of Inner Mongolia of China(No.20080404MS0104)
文摘The eigenvalue problem of the Hamiltonian operator associated with plane elasticity problems is investigated.The eigenfunctions of the operator are directly solved with mixed boundary conditions for the displacement and stress in a rectangular region.The completeness of the eigenfunctions is then proved,providing the feasibility of using separation of variables to solve the problems.A general solution is obtained with the symplectic eigenfunction expansion theorem.
基金supported by the National Natural Science Foundation of China (Grant No. 10962004)the Natural Science Foundation of Inner Mongolia Autonomous Region of China (Grant No. 20080404MS0104)
文摘The completeness theorem of the eigenfunction systems for the product of two 2 × 2 symmetric operator matrices is proved. The result is applied to 4 × 4 infinite-dimensional Hamiltonian operators. A modified method of separation of variables is proposed for a separable Hamiltonian system. As an application of the theorem, the general solutions for the plate bending equation and the free vibration of rectangular thin plates are obtained. Finally, a numerical test is analysed to show the correctness of the results.
基金supported by the National Natural Science Foundation of China(Grant No.10962004)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20070126002)+1 种基金the Natural Science Foundation of Inner Mongolia(Grant No. 20080404MS0104)the Research Foundation for Talented Scholars of Inner Mongolia University(Grant No. 207066)
文摘The eigenvalue problem for the Hamiltonian operator associated with the mathematical model for the deflection of a thin elastic plate is investigated.First,the problem for a rectangular plate with simply supported edges is solved directly.Then,the completeness of the eigenfunctions is proved,thereby demonstrating the feasibility of using separation of variables to solve the problem. Finally,the general solution is obtained by using the proved expansion theorem.
基金This work is supported by Heilongjiang Provincial Natural Science Foundation of China(YQ2020A005)Natural Science Foundation of China(12061029).
文摘Over a field of characteristic p>0,the first cohomology of the orthogonal symplectic Lie superalgebra osp(1,2)with coefficients in baby Verma modules and simple modules is determined by use of the weight space decompositions of these modules relative to a Cartan subalgebra of osp(1,2).As a byproduct,the first cohomology of osp(1,2)with coefficients in the restricted enveloping algebra(under the adjoint action)is not trivial.