In the previous papers I and II, we have studied the difference discrete variational principle and the Euler?Lagrange cohomology in the framework of multi-parameter differential approach. We have gotten the difference...In the previous papers I and II, we have studied the difference discrete variational principle and the Euler?Lagrange cohomology in the framework of multi-parameter differential approach. We have gotten the difference discrete Euler?Lagrange equations and canonical ones for the difference discrete versions of classical mechanics and field theory as well as the difference discrete versions for the Euler?Lagrange cohomology and applied them to get the necessary and sufficient condition for the symplectic or multisymplectic geometry preserving properties in both the Lagrangian and Hamiltonian formalisms. In this paper, we apply the difference discrete variational principle and Euler?Lagrange cohomological approach directly to the symplectic and multisymplectic algorithms. We will show that either Hamiltonian schemes or Lagrangian ones in both the symplectic and multisymplectic algorithms are variational integrators and their difference discrete symplectic structure-preserving properties can always be established not only in the solution space but also in the function space if and only if the related closed Euler?Lagrange cohomological conditions are satisfied.展开更多
A pseudospectral method with symplectic algorithm for the solution of time-dependent Schrodinger equations (TDSE) is introduced. The spatial part of the wavefunction is discretized into sparse grid by pseudospectral...A pseudospectral method with symplectic algorithm for the solution of time-dependent Schrodinger equations (TDSE) is introduced. The spatial part of the wavefunction is discretized into sparse grid by pseudospectral method and the time evolution is given in symplectic scheme. This method allows us to obtain a highly accurate and stable solution of TDSE. The effectiveness and efficiency of this method is demonstrated by the high-order harmonic spectra of one-dimensional atom in strong laser field as compared with previously published work. The influence of the additional static electric field is also investigated.展开更多
Explicit structure-preserving geometric particle-in-cell(PIC)algorithm in curvilinear orthogonal coordinate systems is developed.The work reported represents a further development of the structure-preserving geometric...Explicit structure-preserving geometric particle-in-cell(PIC)algorithm in curvilinear orthogonal coordinate systems is developed.The work reported represents a further development of the structure-preserving geometric PIC algorithm achieving the goal of practical applications in magnetic fusion research.The algorithm is constructed by discretizing the field theory for the system of charged particles and electromagnetic field using Whitney forms,discrete exterior calculus,and explicit non-canonical symplectic integration.In addition to the truncated infinitely dimensional symplectic structure,the algorithm preserves exactly many important physical symmetries and conservation laws,such as local energy conservation,gauge symmetry and the corresponding local charge conservation.As a result,the algorithm possesses the long-term accuracy and fidelity required for first-principles-based simulations of the multiscale tokamak physics.The algorithm has been implemented in the Sym PIC code,which is designed for highefficiency massively-parallel PIC simulations in modern clusters.The code has been applied to carry out whole-device 6 D kinetic simulation studies of tokamak physics.A self-consistent kinetic steady state for fusion plasma in the tokamak geometry is numerically found with a predominately diagonal and anisotropic pressure tensor.The state also admits a steady-state subsonic ion flow in the range of 10 km s-1,agreeing with experimental observations and analytical calculations Kinetic ballooning instability in the self-consistent kinetic steady state is simulated.It is shown that high-n ballooning modes have larger growth rates than low-n global modes,and in the nonlinear phase the modes saturate approximately in 5 ion transit times at the 2%level by the E×B flow generated by the instability.These results are consistent with early and recent electromagnetic gyrokinetic simulations.展开更多
In this paper, we focus on the construction of structure preserving algorithms for Birkhoffian systems, based on existing symplectic schemes for the Hamiltonian equations. The key of the method is to seek an invertibl...In this paper, we focus on the construction of structure preserving algorithms for Birkhoffian systems, based on existing symplectic schemes for the Hamiltonian equations. The key of the method is to seek an invertible transformation which drives the Birkhoffian equations reduce to the Hamiltonian equations. When there exists such a transformation, applying the corresponding inverse map to symplectic discretization of the Hamiltonian equations, then resulting difference schemes are verified to be Birkhoftian symplectic for the original Birkhoffian equations. To illustrate the operation process of the method, we construct several desirable algorithms for the linear damped oscillator and the single pendulum with linear dissipation respectively. All of them exhibit excellent numerical behavior, especially in preserving conserved quantities.展开更多
Possessing advantages such as high computing efficiency and ease of programming,the Symplectic Euler algorithm can be applied to construct a groundpenetrating radar(GPR)wave propagation numerical model for complex geo...Possessing advantages such as high computing efficiency and ease of programming,the Symplectic Euler algorithm can be applied to construct a groundpenetrating radar(GPR)wave propagation numerical model for complex geoelectric structures.However,the Symplectic Euler algorithm is still a difference algorithm,and for a complicated boundary,ladder grids are needed to perform an approximation process,which results in a certain amount of error.Further,grids that are too dense will seriously decrease computing efficiency.This paper proposes a conformal Symplectic Euler algorithm based on the conformal grid technique,amends the electric/magnetic fieldupdating equations of the Symplectic Euler algorithm by introducing the effective dielectric constant and effective permeability coefficient,and reduces the computing error caused by the ladder approximation of rectangular grids.Moreover,three surface boundary models(the underground circular void model,the undulating stratum model,and actual measurement model)are introduced.By comparing reflection waveforms simulated by the traditional Symplectic Euler algorithm,the conformal Symplectic Euler algorithm and the conformal finite difference time domain(CFDTD),the conformal Symplectic Euler algorithm achieves almost the same level of accuracy as the CFDTD method,but the conformal Symplectic Euler algorithm improves the computational efficiency compared with the CFDTD method dramatically.When the dielectric constants of the two materials vary greatly,the conformal Symplectic Euler algorithm can reduce the pseudo-waves almost by 80% compared with the traditional Symplectic Euler algorithm on average.展开更多
The resolution of differential games often concerns the difficult problem of two points border value (TPBV), then ascribe linear quadratic differential game to Hamilton system. To Hamilton system, the algorithm of s...The resolution of differential games often concerns the difficult problem of two points border value (TPBV), then ascribe linear quadratic differential game to Hamilton system. To Hamilton system, the algorithm of symplectic geometry has the merits of being able to copy the dynamic structure of Hamilton system and keep the measure of phase plane. From the viewpoint of Hamilton system, the symplectic characters of linear quadratic differential game were probed; as a try, Symplectic-Runge-Kutta algorithm was presented for the resolution of infinite horizon linear quadratic differential game. An example of numerical calculation was given, and the result can illuminate the feasibility of this method. At the same time, it embodies the fine conservation characteristics of symplectic algorithm to system energy.展开更多
The 3-dimensional couple equations of magneto-electro-elastic structures are derived under Hamiltonian system based on the Hamilton principle. The problem of single sort of variables is converted into the problem of d...The 3-dimensional couple equations of magneto-electro-elastic structures are derived under Hamiltonian system based on the Hamilton principle. The problem of single sort of variables is converted into the problem of double sorts of variables, and the Hamilton canonical equations are established. The 3-dimensional problem of magneto-electro-elastic structure which is investigated in Euclidean space commonly is converted into symplectic system. At the same time the Lagrange system is converted into Hamiltonian system. As an example, the dynamic characteristics of the simply supported functionally graded magneto-electro-elastic material (FGMM) plate and pipe are investigated. Finally, the problem is solved by symplectic algorithm. The results show that the physical quantities of displacement, electric potential and magnetic potential etc. change continuously at the interfaces between layers under the transverse pressure while some other physical quantities such as the stress, electric and magnetic displacement are not continuous. The dynamic stiffness is increased by the piezoelectric effect while decreased by the piezomagnetic effect.展开更多
Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time st...Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time steps for long times. Based on the Hamiltonian expression of the acoustic wave equation, we propose a structure-preserving method for seismic wavefield modeling by applying the symplectic finite-difference method on time grids and the Fourier finite-difference method on space grids to solve the acoustic wave equation. The proposed method is called the symplectic Fourier finite-difference (symplectic FFD) method, and offers high computational accuracy and improves the computational stability. Using acoustic approximation, we extend the method to anisotropic media. We discuss the calculations in the symplectic FFD method for seismic wavefield modeling of isotropic and anisotropic media, and use the BP salt model and BP TTI model to test the proposed method. The numerical examples suggest that the proposed method can be used in seismic modeling of strongly variable velocities, offering high computational accuracy and low numerical dispersion. The symplectic FFD method overcomes the residual qSV wave of seismic modeling in anisotropic media and maintains the stability of the wavefield propagation for large time steps.展开更多
This paper develops a new approach to construct variational integrators. A simplified unconventional Hamilton's variational principle corresponding to initial value problems is proposed, which is convenient for appli...This paper develops a new approach to construct variational integrators. A simplified unconventional Hamilton's variational principle corresponding to initial value problems is proposed, which is convenient for applications. The displacement and mo- mentum are approximated with the same Lagrange interpolation. After the numerical integration and variational operation, the original problems are expressed as algebraic equations with the displacement and momentum at the interpolation points as unknown variables. Some particular variational integrators are derived. An optimal scheme of choosing initial values for the Newton-Raphson method is presented for the nonlinear dynamic system. In addition, specific examples show that the proposed integrators are symplectic when the interpolation point coincides with the numerical integration point, and both are Gaussian quadrature points. Meanwhile, compared with the same order symplectic Runge-Kutta methods, although the accuracy of the two methods is almost the same, the proposed integrators are much simpler and less computationally expensive.展开更多
By converting an optimal control problem for nonlinear systems to a Hamiltonian system,a symplecitc-preserving method is proposed.The state and costate variables are approximated by the Lagrange polynomial.The state v...By converting an optimal control problem for nonlinear systems to a Hamiltonian system,a symplecitc-preserving method is proposed.The state and costate variables are approximated by the Lagrange polynomial.The state variables at two ends of the time interval are taken as independent variables.Based on the dual variable principle,nonlinear optimal control problems are replaced with nonlinear equations.Furthermore,in the implementation of the symplectic algorithm,based on the 2N algorithm,a multilevel method is proposed.When the time grid is refined from low level to high level,the initial state and costate variables of the nonlinear equations can be obtained from the Lagrange interpolation at the low level grid to improve efficiency.Numerical simulations show the precision and the efficiency of the proposed algorithm in this paper.展开更多
The mathematical and statistical modeling of the problem of poverty is a major challenge given Burundi’s economic development. Innovative economic optimization systems are widely needed to face the problem of the dyn...The mathematical and statistical modeling of the problem of poverty is a major challenge given Burundi’s economic development. Innovative economic optimization systems are widely needed to face the problem of the dynamic of the poverty in Burundi. The Burundian economy shows an inflation rate of -1.5% in 2018 for the Gross Domestic Product growth real rate of 2.8% in 2016. In this research, the aim is to find a model that contributes to solving the problem of poverty in Burundi. The results of this research fill the knowledge gap in the modeling and optimization of the Burundian economic system. The aim of this model is to solve an optimization problem combining the variables of production, consumption, budget, human resources and available raw materials. Scientific modeling and optimal solving of the poverty problem show the tools for measuring poverty rate and determining various countries’ poverty levels when considering advanced knowledge. In addition, investigating the aspects of poverty will properly orient development aid to developing countries and thus, achieve their objectives of growth and the fight against poverty. This paper provides a new and innovative framework for global scientific research regarding the multiple facets of this problem. An estimate of the poverty rate allows good progress with the theory and optimization methods in measuring the poverty rate and achieving sustainable development goals. By comparing the annual food production and the required annual consumption, there is an imbalance between different types of food. Proteins, minerals and vitamins produced in Burundi are sufficient when considering their consumption as required by the entire Burundian population. This positive contribution for the latter comes from the fact that some cows, goats, fishes, ···, slaughtered in Burundi come from neighboring countries. Real production remains in deficit. The lipids, acids, calcium, fibers and carbohydrates produced in Burundi are insufficient for consumption. This negative contribution proves a Burundian food deficit. It is a decision-making indicator for the design and updating of agricultural policy and implementation programs as well as projects. Investment and economic growth are only possible when food security is mastered. The capital allocated to food investment must be revised upwards. Demographic control is also a relevant indicator to push forward Burundi among the emerging countries in 2040. Meanwhile, better understanding of the determinants of poverty by taking cultural and organizational aspects into account guides managers for poverty reduction projects and programs.展开更多
In this paper we survey recent progress in symplectic algorithms for use in quantum systems in the following topics:Symplectic schemes for solving Hamiltonian systems;Classical trajectories of diatomic systems,model m...In this paper we survey recent progress in symplectic algorithms for use in quantum systems in the following topics:Symplectic schemes for solving Hamiltonian systems;Classical trajectories of diatomic systems,model molecule A2B,Hydrogen ion H+2 and elementary atmospheric reaction N(4S)+O2(X 3Σ−g)→NO(X 2Π)+O(3P)calculated by means of Runge-Kutta methods and symplectic methods;the classical dissociation of the HF molecule and classical dynamics of H+2 in an intense laser field;the symplectic form and symplectic-scheme shooting method for the time-independent Schr¨odinger equation;the computation of continuum eigenfunction of the Schr¨odinger equation;asymptotic boundary conditions for solving the time-dependent Schr¨odinger equation of an atom in an intense laser field;symplectic discretization based on asymptotic boundary condition and the numerical eigenfunction expansion;and applications in computing multi-photon ionization,above-threshold ionization,Rabbi oscillation and high-order harmonic generation of laser-atom interaction.展开更多
Recently the Kirchhoff rod and the methods of dynamical analogue have been widely used in modeling DNA.The features of a DNA such as its super slender and super large deformation raise new challenges in modeling and n...Recently the Kirchhoff rod and the methods of dynamical analogue have been widely used in modeling DNA.The features of a DNA such as its super slender and super large deformation raise new challenges in modeling and numerical simulations of a Kirchhoff rod.In this paper,Euler parameters are introduced to set up the quasi-Hamilton system of an elastic rod,then a symplectic algorithm is applied in its numerical simulations.Finally,a simplified surface model of the rod is given based on the hypothesis of rigid cross-section.展开更多
In this paper,a novel symplectic conservative perturbation series expansion method is proposed to investigate the dynamic response of linear Hamiltonian systems accounting for perturbations,which mainly originate from...In this paper,a novel symplectic conservative perturbation series expansion method is proposed to investigate the dynamic response of linear Hamiltonian systems accounting for perturbations,which mainly originate from parameters dispersions and measurement errors.Taking the perturbations into account,the perturbed system is regarded as a modification of the nominal system.By combining the perturbation series expansion method with the deterministic linear Hamiltonian system,the solution to the perturbed system is expressed in the form of asymptotic series by introducing a small parameter and a series of Hamiltonian canonical equations to predict the dynamic response are derived.Eventually,the response of the perturbed system can be obtained successfully by solving these Hamiltonian canonical equations using the symplectic difference schemes.The symplectic conservation of the proposed method is demonstrated mathematically indicating that the proposed method can preserve the characteristic property of the system.The performance of the proposed method is evaluated by three examples compared with the Runge-Kutta algorithm.Numerical examples illustrate the superiority of the proposed method in accuracy and stability,especially symplectic conservation for solving linear Hamiltonian systems with perturbations and the applicability in structural dynamic response estimation.展开更多
The purpose of this paper is to explore an extension of some fundamental properties of the Hamiltonian systems to a more general case. We first extend symplectic group to a general N- group, GN, and prove that it has...The purpose of this paper is to explore an extension of some fundamental properties of the Hamiltonian systems to a more general case. We first extend symplectic group to a general N- group, GN, and prove that it has certain similar properties. A particular property of GN is that as a Lie group dim (GN)≥1. Certain properties of its Lie-algebra 9N are investigated. The results obtained are used to investigate the structure-preserving systems, which generalize the property of symplectic form preserving of Hamiltonian system to a covariant tensor field preserving of certain dynamic systems. The results provide a theoretical benchmark of applying symplectic algorithm to a considerably larger class of structure-preserving systems.展开更多
文摘In the previous papers I and II, we have studied the difference discrete variational principle and the Euler?Lagrange cohomology in the framework of multi-parameter differential approach. We have gotten the difference discrete Euler?Lagrange equations and canonical ones for the difference discrete versions of classical mechanics and field theory as well as the difference discrete versions for the Euler?Lagrange cohomology and applied them to get the necessary and sufficient condition for the symplectic or multisymplectic geometry preserving properties in both the Lagrangian and Hamiltonian formalisms. In this paper, we apply the difference discrete variational principle and Euler?Lagrange cohomological approach directly to the symplectic and multisymplectic algorithms. We will show that either Hamiltonian schemes or Lagrangian ones in both the symplectic and multisymplectic algorithms are variational integrators and their difference discrete symplectic structure-preserving properties can always be established not only in the solution space but also in the function space if and only if the related closed Euler?Lagrange cohomological conditions are satisfied.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10374119 and 10674154), and The 0ne- Hundred-Talents Project of Chinese Academy of Science.Acknowledgments We gratefully acknowledge Professor Ding P Z and Professor Liu X S for their hospitality and help in symplectic algorithm.
文摘A pseudospectral method with symplectic algorithm for the solution of time-dependent Schrodinger equations (TDSE) is introduced. The spatial part of the wavefunction is discretized into sparse grid by pseudospectral method and the time evolution is given in symplectic scheme. This method allows us to obtain a highly accurate and stable solution of TDSE. The effectiveness and efficiency of this method is demonstrated by the high-order harmonic spectra of one-dimensional atom in strong laser field as compared with previously published work. The influence of the additional static electric field is also investigated.
基金supported by the the National MCF Energy R&D Program(No.2018YFE0304100)National Key Research and Development Program(Nos.2016YFA0400600,2016YFA0400601 and 2016YFA0400602)+1 种基金National Natural Science Foundation of China(Nos.11905220 and 11805273)supported by the U.S.Department of Energy(DE-AC02-09CH11466)。
文摘Explicit structure-preserving geometric particle-in-cell(PIC)algorithm in curvilinear orthogonal coordinate systems is developed.The work reported represents a further development of the structure-preserving geometric PIC algorithm achieving the goal of practical applications in magnetic fusion research.The algorithm is constructed by discretizing the field theory for the system of charged particles and electromagnetic field using Whitney forms,discrete exterior calculus,and explicit non-canonical symplectic integration.In addition to the truncated infinitely dimensional symplectic structure,the algorithm preserves exactly many important physical symmetries and conservation laws,such as local energy conservation,gauge symmetry and the corresponding local charge conservation.As a result,the algorithm possesses the long-term accuracy and fidelity required for first-principles-based simulations of the multiscale tokamak physics.The algorithm has been implemented in the Sym PIC code,which is designed for highefficiency massively-parallel PIC simulations in modern clusters.The code has been applied to carry out whole-device 6 D kinetic simulation studies of tokamak physics.A self-consistent kinetic steady state for fusion plasma in the tokamak geometry is numerically found with a predominately diagonal and anisotropic pressure tensor.The state also admits a steady-state subsonic ion flow in the range of 10 km s-1,agreeing with experimental observations and analytical calculations Kinetic ballooning instability in the self-consistent kinetic steady state is simulated.It is shown that high-n ballooning modes have larger growth rates than low-n global modes,and in the nonlinear phase the modes saturate approximately in 5 ion transit times at the 2%level by the E×B flow generated by the instability.These results are consistent with early and recent electromagnetic gyrokinetic simulations.
基金supported by the National Natural Science Foundation of China(Grant No.11272050)the Excellent Young Teachers Program of North China University of Technology(Grant No.XN132)the Construction Plan for Innovative Research Team of North China University of Technology(Grant No.XN129)
文摘In this paper, we focus on the construction of structure preserving algorithms for Birkhoffian systems, based on existing symplectic schemes for the Hamiltonian equations. The key of the method is to seek an invertible transformation which drives the Birkhoffian equations reduce to the Hamiltonian equations. When there exists such a transformation, applying the corresponding inverse map to symplectic discretization of the Hamiltonian equations, then resulting difference schemes are verified to be Birkhoftian symplectic for the original Birkhoffian equations. To illustrate the operation process of the method, we construct several desirable algorithms for the linear damped oscillator and the single pendulum with linear dissipation respectively. All of them exhibit excellent numerical behavior, especially in preserving conserved quantities.
基金funded by the National Key Research and Development Program of China(No.2017YFC1501204)the National Natural Science Foundation of China(Nos.51678536,41404096)+2 种基金the Scientific and Technological Research Program of Henan Province(No.171100310100)Program for Innovative Research Team(in Science and Technology)in University of Henan Province(19HASTIT043)the Outstanding Young Talent Research Fund of Zhengzhou University(1621323001).
文摘Possessing advantages such as high computing efficiency and ease of programming,the Symplectic Euler algorithm can be applied to construct a groundpenetrating radar(GPR)wave propagation numerical model for complex geoelectric structures.However,the Symplectic Euler algorithm is still a difference algorithm,and for a complicated boundary,ladder grids are needed to perform an approximation process,which results in a certain amount of error.Further,grids that are too dense will seriously decrease computing efficiency.This paper proposes a conformal Symplectic Euler algorithm based on the conformal grid technique,amends the electric/magnetic fieldupdating equations of the Symplectic Euler algorithm by introducing the effective dielectric constant and effective permeability coefficient,and reduces the computing error caused by the ladder approximation of rectangular grids.Moreover,three surface boundary models(the underground circular void model,the undulating stratum model,and actual measurement model)are introduced.By comparing reflection waveforms simulated by the traditional Symplectic Euler algorithm,the conformal Symplectic Euler algorithm and the conformal finite difference time domain(CFDTD),the conformal Symplectic Euler algorithm achieves almost the same level of accuracy as the CFDTD method,but the conformal Symplectic Euler algorithm improves the computational efficiency compared with the CFDTD method dramatically.When the dielectric constants of the two materials vary greatly,the conformal Symplectic Euler algorithm can reduce the pseudo-waves almost by 80% compared with the traditional Symplectic Euler algorithm on average.
基金Project supported by the National Aeronautics Base Science Foundation of China (No.2000CB080601)the National Defence Key Pre-research Program of China during the 10th Five-Year Plan Period (No.2002BK080602)
文摘The resolution of differential games often concerns the difficult problem of two points border value (TPBV), then ascribe linear quadratic differential game to Hamilton system. To Hamilton system, the algorithm of symplectic geometry has the merits of being able to copy the dynamic structure of Hamilton system and keep the measure of phase plane. From the viewpoint of Hamilton system, the symplectic characters of linear quadratic differential game were probed; as a try, Symplectic-Runge-Kutta algorithm was presented for the resolution of infinite horizon linear quadratic differential game. An example of numerical calculation was given, and the result can illuminate the feasibility of this method. At the same time, it embodies the fine conservation characteristics of symplectic algorithm to system energy.
文摘The 3-dimensional couple equations of magneto-electro-elastic structures are derived under Hamiltonian system based on the Hamilton principle. The problem of single sort of variables is converted into the problem of double sorts of variables, and the Hamilton canonical equations are established. The 3-dimensional problem of magneto-electro-elastic structure which is investigated in Euclidean space commonly is converted into symplectic system. At the same time the Lagrange system is converted into Hamiltonian system. As an example, the dynamic characteristics of the simply supported functionally graded magneto-electro-elastic material (FGMM) plate and pipe are investigated. Finally, the problem is solved by symplectic algorithm. The results show that the physical quantities of displacement, electric potential and magnetic potential etc. change continuously at the interfaces between layers under the transverse pressure while some other physical quantities such as the stress, electric and magnetic displacement are not continuous. The dynamic stiffness is increased by the piezoelectric effect while decreased by the piezomagnetic effect.
基金supported by National Natural Science Foundation of China(41504109,41404099)the Natural Science Foundation of Shandong Province(BS2015HZ008)the project of "Distinguished Professor of Jiangsu Province"
文摘Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time steps for long times. Based on the Hamiltonian expression of the acoustic wave equation, we propose a structure-preserving method for seismic wavefield modeling by applying the symplectic finite-difference method on time grids and the Fourier finite-difference method on space grids to solve the acoustic wave equation. The proposed method is called the symplectic Fourier finite-difference (symplectic FFD) method, and offers high computational accuracy and improves the computational stability. Using acoustic approximation, we extend the method to anisotropic media. We discuss the calculations in the symplectic FFD method for seismic wavefield modeling of isotropic and anisotropic media, and use the BP salt model and BP TTI model to test the proposed method. The numerical examples suggest that the proposed method can be used in seismic modeling of strongly variable velocities, offering high computational accuracy and low numerical dispersion. The symplectic FFD method overcomes the residual qSV wave of seismic modeling in anisotropic media and maintains the stability of the wavefield propagation for large time steps.
基金Project supported by the National Natural Science Foundation of China(Nos.11172334 and11202247)the Fundamental Research Funds for the Central Universities(No.2013390003161292)
文摘This paper develops a new approach to construct variational integrators. A simplified unconventional Hamilton's variational principle corresponding to initial value problems is proposed, which is convenient for applications. The displacement and mo- mentum are approximated with the same Lagrange interpolation. After the numerical integration and variational operation, the original problems are expressed as algebraic equations with the displacement and momentum at the interpolation points as unknown variables. Some particular variational integrators are derived. An optimal scheme of choosing initial values for the Newton-Raphson method is presented for the nonlinear dynamic system. In addition, specific examples show that the proposed integrators are symplectic when the interpolation point coincides with the numerical integration point, and both are Gaussian quadrature points. Meanwhile, compared with the same order symplectic Runge-Kutta methods, although the accuracy of the two methods is almost the same, the proposed integrators are much simpler and less computationally expensive.
基金supported by the National Natural Science Foundation of China(Nos.10632030,10902020,and 10721062)the Research Fund for the Doctoral Program of Higher Education of China(No.20070141067)+2 种基金the Doctoral Fund of Liaoning Province(No.20081091)the Key Laboratory Fund of Liaoning Province of China(No.2009S018)the Young Researcher Funds of Dalian University of Technology(No.SFDUT07002)
文摘By converting an optimal control problem for nonlinear systems to a Hamiltonian system,a symplecitc-preserving method is proposed.The state and costate variables are approximated by the Lagrange polynomial.The state variables at two ends of the time interval are taken as independent variables.Based on the dual variable principle,nonlinear optimal control problems are replaced with nonlinear equations.Furthermore,in the implementation of the symplectic algorithm,based on the 2N algorithm,a multilevel method is proposed.When the time grid is refined from low level to high level,the initial state and costate variables of the nonlinear equations can be obtained from the Lagrange interpolation at the low level grid to improve efficiency.Numerical simulations show the precision and the efficiency of the proposed algorithm in this paper.
文摘The mathematical and statistical modeling of the problem of poverty is a major challenge given Burundi’s economic development. Innovative economic optimization systems are widely needed to face the problem of the dynamic of the poverty in Burundi. The Burundian economy shows an inflation rate of -1.5% in 2018 for the Gross Domestic Product growth real rate of 2.8% in 2016. In this research, the aim is to find a model that contributes to solving the problem of poverty in Burundi. The results of this research fill the knowledge gap in the modeling and optimization of the Burundian economic system. The aim of this model is to solve an optimization problem combining the variables of production, consumption, budget, human resources and available raw materials. Scientific modeling and optimal solving of the poverty problem show the tools for measuring poverty rate and determining various countries’ poverty levels when considering advanced knowledge. In addition, investigating the aspects of poverty will properly orient development aid to developing countries and thus, achieve their objectives of growth and the fight against poverty. This paper provides a new and innovative framework for global scientific research regarding the multiple facets of this problem. An estimate of the poverty rate allows good progress with the theory and optimization methods in measuring the poverty rate and achieving sustainable development goals. By comparing the annual food production and the required annual consumption, there is an imbalance between different types of food. Proteins, minerals and vitamins produced in Burundi are sufficient when considering their consumption as required by the entire Burundian population. This positive contribution for the latter comes from the fact that some cows, goats, fishes, ···, slaughtered in Burundi come from neighboring countries. Real production remains in deficit. The lipids, acids, calcium, fibers and carbohydrates produced in Burundi are insufficient for consumption. This negative contribution proves a Burundian food deficit. It is a decision-making indicator for the design and updating of agricultural policy and implementation programs as well as projects. Investment and economic growth are only possible when food security is mastered. The capital allocated to food investment must be revised upwards. Demographic control is also a relevant indicator to push forward Burundi among the emerging countries in 2040. Meanwhile, better understanding of the determinants of poverty by taking cultural and organizational aspects into account guides managers for poverty reduction projects and programs.
基金supported in part by the National Natural Science Foundation of China(#10574057,#10571074,and#10171039)by the Specialized Research Fund for the Doctoral Program of Higher Education(#20050183010).
文摘In this paper we survey recent progress in symplectic algorithms for use in quantum systems in the following topics:Symplectic schemes for solving Hamiltonian systems;Classical trajectories of diatomic systems,model molecule A2B,Hydrogen ion H+2 and elementary atmospheric reaction N(4S)+O2(X 3Σ−g)→NO(X 2Π)+O(3P)calculated by means of Runge-Kutta methods and symplectic methods;the classical dissociation of the HF molecule and classical dynamics of H+2 in an intense laser field;the symplectic form and symplectic-scheme shooting method for the time-independent Schr¨odinger equation;the computation of continuum eigenfunction of the Schr¨odinger equation;asymptotic boundary conditions for solving the time-dependent Schr¨odinger equation of an atom in an intense laser field;symplectic discretization based on asymptotic boundary condition and the numerical eigenfunction expansion;and applications in computing multi-photon ionization,above-threshold ionization,Rabbi oscillation and high-order harmonic generation of laser-atom interaction.
基金Jiangsu Overseas Research or Training Program for University Prominent Young Faculty and PresidentsNational Natural Science Foundation of China(Grant Nos.11426141,11571136 and 11072120).
文摘Recently the Kirchhoff rod and the methods of dynamical analogue have been widely used in modeling DNA.The features of a DNA such as its super slender and super large deformation raise new challenges in modeling and numerical simulations of a Kirchhoff rod.In this paper,Euler parameters are introduced to set up the quasi-Hamilton system of an elastic rod,then a symplectic algorithm is applied in its numerical simulations.Finally,a simplified surface model of the rod is given based on the hypothesis of rigid cross-section.
基金the National Nature Science Foundation of China(No.11772026)the Defense Industrial Technology Development Program(Nos.JCKY2016204B101,JCKY2018601B001)+1 种基金the Beijing Municipal Science and Technology Commission via project(No.Z191100004619006)the Beijing Advanced Discipline Center for Unmanned Aircraft System for the financial supports.
文摘In this paper,a novel symplectic conservative perturbation series expansion method is proposed to investigate the dynamic response of linear Hamiltonian systems accounting for perturbations,which mainly originate from parameters dispersions and measurement errors.Taking the perturbations into account,the perturbed system is regarded as a modification of the nominal system.By combining the perturbation series expansion method with the deterministic linear Hamiltonian system,the solution to the perturbed system is expressed in the form of asymptotic series by introducing a small parameter and a series of Hamiltonian canonical equations to predict the dynamic response are derived.Eventually,the response of the perturbed system can be obtained successfully by solving these Hamiltonian canonical equations using the symplectic difference schemes.The symplectic conservation of the proposed method is demonstrated mathematically indicating that the proposed method can preserve the characteristic property of the system.The performance of the proposed method is evaluated by three examples compared with the Runge-Kutta algorithm.Numerical examples illustrate the superiority of the proposed method in accuracy and stability,especially symplectic conservation for solving linear Hamiltonian systems with perturbations and the applicability in structural dynamic response estimation.
基金National Natural Science Foundation of China (No.G59837270, G1998020308) and the National Key Project of China.
文摘The purpose of this paper is to explore an extension of some fundamental properties of the Hamiltonian systems to a more general case. We first extend symplectic group to a general N- group, GN, and prove that it has certain similar properties. A particular property of GN is that as a Lie group dim (GN)≥1. Certain properties of its Lie-algebra 9N are investigated. The results obtained are used to investigate the structure-preserving systems, which generalize the property of symplectic form preserving of Hamiltonian system to a covariant tensor field preserving of certain dynamic systems. The results provide a theoretical benchmark of applying symplectic algorithm to a considerably larger class of structure-preserving systems.