Mechanisms of homeostatic plasticity promote compensatory changes of cellular excitability in response to chronic changes in the network activity.This type of plasticity is essential for the maintenance of brain circu...Mechanisms of homeostatic plasticity promote compensatory changes of cellular excitability in response to chronic changes in the network activity.This type of plasticity is essential for the maintenance of brain circuits and is involved in the regulation of neural regeneration and the progress of neurodegenerative disorders.One of the most studied homeostatic processes is synaptic scaling,where global synaptic adjustments take place to restore the neuronal firing rate to a physiological range by the modulation of synaptic receptors,neurotransmitters,and morphology.However,despite the comprehensive literature on the electrophysiological properties of homeostatic scaling,less is known about the structural adjustments that occur in the synapses and dendritic tree.In this study,we performed a meta-analysis of articles investigating the effects of chronic network excitation(synaptic downscaling)or inhibition(synaptic upscaling)on the dendritic spine density of neurons.Our results indicate that spine density is consistently reduced after protocols that induce synaptic scaling,independent of the intervention type.Then,we discuss the implication of our findings to the current knowledge on the morphological changes induced by homeostatic plasticity.展开更多
基金supported by scholarships from Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq)Coordenaao de Aperfeicoamento de Pessoal de Nível Superior(CAPES),Brazil(to TCM and DR)+2 种基金supported by the Kungl Vetenskapssamh Scholarship(Royal Society of Arts and Scientists)provided by Uppsala University,Sweden(to TCM)supported by the Swedish Research Council and the Swedish Brain Research Foundation(to HBS)。
文摘Mechanisms of homeostatic plasticity promote compensatory changes of cellular excitability in response to chronic changes in the network activity.This type of plasticity is essential for the maintenance of brain circuits and is involved in the regulation of neural regeneration and the progress of neurodegenerative disorders.One of the most studied homeostatic processes is synaptic scaling,where global synaptic adjustments take place to restore the neuronal firing rate to a physiological range by the modulation of synaptic receptors,neurotransmitters,and morphology.However,despite the comprehensive literature on the electrophysiological properties of homeostatic scaling,less is known about the structural adjustments that occur in the synapses and dendritic tree.In this study,we performed a meta-analysis of articles investigating the effects of chronic network excitation(synaptic downscaling)or inhibition(synaptic upscaling)on the dendritic spine density of neurons.Our results indicate that spine density is consistently reduced after protocols that induce synaptic scaling,independent of the intervention type.Then,we discuss the implication of our findings to the current knowledge on the morphological changes induced by homeostatic plasticity.