This paper builds up an accurate nonlinear mathematical model of anelectro-hydraulic force/ torque servo control system, and provides a thorough theoretical analysison the feedforward compensation for extraneous force...This paper builds up an accurate nonlinear mathematical model of anelectro-hydraulic force/ torque servo control system, and provides a thorough theoretical analysison the feedforward compensation for extraneous force/torque, whose limitation is analyzed andrevealed. The nonlinear factors and the servo valve dynamics have much influence on the systemcharacteristics. Subsequently a velocity syn-chronizing-compensation method by using the controlsignal of the control actuator is proposed, which can reduce the lagging effects for the betterperformance. For the reason of similarity between the model of control actuator and that of the loadsimulator, the proposed method performs well against the influence of nonlinear factors. Thesimulations and the experiments confirm that this control scheme results in a quick response,robustness, and excellent ability against disturbance.展开更多
A new concept of banana vibrating screen which has the same effect as traditional banana vibrating screen in a new way was put forward.The dynamic model of vibrating screen was established and its working principle wa...A new concept of banana vibrating screen which has the same effect as traditional banana vibrating screen in a new way was put forward.The dynamic model of vibrating screen was established and its working principle was analyzed when the action line of the exciting force did not act through the centroid of screen box.Moreover,the dynamic differential equations of centroid and screen surface were obtained.The motions of centroid and screen surface were simulated with actual parameters of the design example in Matlab/Simulink.The results show that not only the amplitude has a significant decrease from 9.38 to 4.10 mm,but also the throwing index and vibrating direction angle have a significant decrease from 10.49 to 4.59,and from 58.10° to 33.29°,respectively,along the screen surface,which indicates that motion characteristics of vibrating screen are consistent with those of traditional banana vibrating screen only by means of a single angle of screen surface.What's more,such banana vibrating screen of variable linear trajectory with greater processing capacity could be obtained by adjusting the relative position of force center and the centroid of screen box properly.展开更多
The velocity feedback in a load simulator with a motor synchronizing in position is achieved by installing a tachometer generator between tile shaft and shell of the loading motor, and thes not only decreases the dist...The velocity feedback in a load simulator with a motor synchronizing in position is achieved by installing a tachometer generator between tile shaft and shell of the loading motor, and thes not only decreases the disturbance torque of tile load simlilator greatly but also improves its dynamic performance.展开更多
Cluster synchronization of nonlinear uncertain complex networks with desynchronizing impulse is explored. First of all, a feedback controller is employed, based on the Lyapunov stability theorem and Lipschitz conditio...Cluster synchronization of nonlinear uncertain complex networks with desynchronizing impulse is explored. First of all, a feedback controller is employed, based on the Lyapunov stability theorem and Lipschitz condition, to guarantee that the uncertain complex networks with desynchronizing impulse synchronize with an object trajectory. Furthermore, a synchronizing impulse controller is presented, which is more efficiently and directly used to achieve the cluster synchronization. Finally, numerical examples are examined to show the effectiveness of the proposed methods.展开更多
This work investigates synchronization of two fractional unified hyperchaotic systems via impulsive control.The stable theory about impulsive fractional equation is studied based on the stable theory about fractional ...This work investigates synchronization of two fractional unified hyperchaotic systems via impulsive control.The stable theory about impulsive fractional equation is studied based on the stable theory about fractional linear system.Then according to the theorem proposed the sufficient condition on feedback strength and impulsive interval are established to guarantee the synchronization.Numerical simulations show the effectiveness of the theorem.展开更多
In this paper, we consider an abstract non-autonomous evolution equation with multiple delays in a Hilbert space H: u'(t) + Au(t) = F(u(t-r<sub>1</sub><sub></sub>),...,u((t-r<sub&g...In this paper, we consider an abstract non-autonomous evolution equation with multiple delays in a Hilbert space H: u'(t) + Au(t) = F(u(t-r<sub>1</sub><sub></sub>),...,u((t-r<sub>n</sub><sub></sub>)) + g(t), where A: D(A)?H→H is a positive definite selfadjoint operator, F: H<sup>n</sup><sub>a</sub> → H is a nonlinear mapping, r<sub>1</sub>,...,r<sub>n</sub> are nonnegative constants, and g(t)∈ C(□;H) is bounded. Motivated by [1] [2], we obtain the existence and stability of synchronizing solution under some convergence condition. By this result, we provide a general approach for guaranteeing the existence and stability of periodic, quasiperiodic or almost periodic solution of the equation.展开更多
In this paper we present the control and synchronization of a coupled Bragg acousto-optic bistable map system using nonlinear feedback technology. This nonlinear feedback technology is useful to control a temporally c...In this paper we present the control and synchronization of a coupled Bragg acousto-optic bistable map system using nonlinear feedback technology. This nonlinear feedback technology is useful to control a temporally chaotic system as well as a spatiotemporally chaotic system. It can be extended to synchronize the spatiotemporal chaos. It can work in a wide range of the controlled and synchronized signals, so it can decrease the sensitivity down to a noise level. The synchronization can be obtained by the analysis of the largest conditional Lyapunov exponent spectrum, and easily implemented in practical systems just by adjusting the coupled strength without any pre-knowledge of the dynamic system required.展开更多
This paper investigates the synchronization between integer-order and fractional-order chaotic systems. By intro- ducing fractional-order operators into the controllers, the addressed problem is transformed into a syn...This paper investigates the synchronization between integer-order and fractional-order chaotic systems. By intro- ducing fractional-order operators into the controllers, the addressed problem is transformed into a synchronization one among integer-order systems. A novel general method is presented in the paper with rigorous proof. Based on this method, effective controllers are designed for the synchronization between Lorenz systems with an integer order and a fractional order, and for the synchronization between an integer-order Chen system and a fractional-order Liu system. Numerical results, which agree well with the theoretical analyses, are also given to show the effectiveness of this method.展开更多
In this paper, the problem of the finite-time synchronization of two uncertain chaotic gyros is discussed. The parameters of both the master and the slave gyros are assumed to be unknown in advance. The effects of mod...In this paper, the problem of the finite-time synchronization of two uncertain chaotic gyros is discussed. The parameters of both the master and the slave gyros are assumed to be unknown in advance. The effects of model uncertainties and input nonlinearities are also taken into account. An appropriate adaptation law is proposed to tackle the gyros' unknown parameters. Based on the adaptation law and the finite-time control technique, proper control laws are introduced to ensure that the trajectories of the slave gyro converge to the trajectories of the master gyro in a given finite time. Simulation results show the applicability and the efficiency of the proposed finite-time controller.展开更多
The present study explores an IEEE1588 Synchronizing System for smart distribution grid based on Industrial Ethernet. The paper first analyzes the communication system in distribution network and then proposed the pro...The present study explores an IEEE1588 Synchronizing System for smart distribution grid based on Industrial Ethernet. The paper first analyzes the communication system in distribution network and then proposed the project of time synchronizing system using IEEE1588 in distribution network. The study focuses on rational clock correcting time region segmentation, selecting the best clock source injection point and multiple redundant methods when correcting time method lose efficacy, etc. The precision of time synchronizing is better than that of 1 millisecond.展开更多
In this paper, we propose a well-designed network model with a parameter and study full and partial synchronization of the network model based on the stability analysis. The network model is composed of a star-coupled...In this paper, we propose a well-designed network model with a parameter and study full and partial synchronization of the network model based on the stability analysis. The network model is composed of a star-coupled subnetwork and a globally coupled subnetwork. By analyzing the special coupling configuration, three control schemes are obtained for synchronizing the network model. Further analysis indicates that even if the inner couplings in each subnetwork are very weak, two of the control schemes are still valid. In particular, if the outer coupling weight parameter 0 is larger than (n2 - 2n)/4, or the subnetwork size n is larger than 02, the two subnetworks with weak inner couplings can achieve synchronization. In addition, the synchronizability is independent of the network size in case of 0 〈 0 〈 n/(n + 1 ). Finally, we carry out some numerical simulations to confirm the validity of the obtained control schemes. It is worth noting that the main idea of this paper also applies to any network consisting of a dense subnetwork and a sparse network.展开更多
It is shown that synchronization, in a weak sense, can be achieved between two-parameter non-matching systems by using the adaptive control method. In essence, this requires just a scalar signal transmitted from the d...It is shown that synchronization, in a weak sense, can be achieved between two-parameter non-matching systems by using the adaptive control method. In essence, this requires just a scalar signal transmitted from the drive to the response system. Two typical chaotic systems, i.e., Lorenz and Rossler system, are taken as examples of applications in this paper.展开更多
The IEEE1588 network time synchronization, matched with smart substation information network transmission, is becoming the next generation advanced data synchronization of the smart substation. It is known that the in...The IEEE1588 network time synchronization, matched with smart substation information network transmission, is becoming the next generation advanced data synchronization of the smart substation. It is known that the inherent asymmetry error of the network synchronization approach in the smart substation is highlighted, which is concerned particularly. This paper models the synchronization process of the IEEE1588 based on the communication simulation software of OPNET Modeler. Firstly, it builds the models of master-slave clock, IEEE1588 protocol and network synchroniza- tion model, and analyzes the composition and influencing factors of the asymmetry error. Secondly, it quantitatively analyzes the influence of the synchronous asymmetric error of the IEEE1588 affected by the network status differences and the clock synchronization signal transmission path differences. Then its correction method is analyzed, in order to improve the IEEE1588 synchronization reliability and gives the solutions to its application in smart substation.展开更多
Chaotic synchronization can be achieved by large enough external noise strength.It is shown that a pair of generic systems in the same potential evolving to equilibrium thr-ough standard Langevin dynamics with the sam...Chaotic synchronization can be achieved by large enough external noise strength.It is shown that a pair of generic systems in the same potential evolving to equilibrium thr-ough standard Langevin dynamics with the same noise collapse into the same orbits at longtime.We now extend the above idea to two identical hyperchaotic systems of generalizedvan der Pol oscillator.We then have Langevin equations as follows.展开更多
Coupled oscillators are common in many scientific areas,such as optics,communications,engi-neering,biology,etc.The synchronization of oscillators has important practical applications.This letter focuses on synchroniza...Coupled oscillators are common in many scientific areas,such as optics,communications,engi-neering,biology,etc.The synchronization of oscillators has important practical applications.This letter focuses on synchronization of coupled hyperchaotic oscillators,which exists in natureand in laboratory and is very important.展开更多
Slow inward currents are known as neuronal excitatory currents mediated by glutamate release and activation of neuronal extra synaptic N-met hyl-D-aspartate receptors with the contribution of astrocytes.These events a...Slow inward currents are known as neuronal excitatory currents mediated by glutamate release and activation of neuronal extra synaptic N-met hyl-D-aspartate receptors with the contribution of astrocytes.These events are significantly slower than the excitatory postsynaptic currents.Parameters of slow inward currents are determined by seve ral factors including the mechanisms of astrocytic activation and glutamate release,as well as the diffusion pathways from the release site towards the extra synaptic recepto rs.Astrocytes are stimulated by neuronal network activity,which in turn excite neurons,forming an astrocyte-neuron feedback loop.Mostly as a consequence of brain edema,astrocytic swelling can also induce slow inward currents under pathological conditions.There is a growing body of evidence on the roles of slow inward currents on a single neuron or local network level.These events often occur in synchro ny on neurons located in the same astrocytic domain.Besides synchronization of neuronal excitability,slow inward currents also set synaptic strength via eliciting timing-dependent synaptic plasticity.In addition,slow inward currents are also subject to non-synaptic plasticity triggered by long-la sting stimulation of the excitatory inputs.Of note,there might be important regionspecific differences in the roles and actions triggering slow inward currents.In greater networks,the pathophysiological roles of slow inward currents can be better understood than physiological ones.Slow inward currents are identified in the pathophysiological background of autism,as slow inward currents drive early hypersynchrony of the neural networks.Slow inward currents are significant contributors to paroxysmal depolarizational shifts/interictal spikes.These events are related to epilepsy,but also found in Alzheimer's disease,Parkinson's disease,and stroke,leading to the decline of cognitive functions.Events with features overlapping with slow inward currents(excitatory,N-methyl-Daspartate-receptor mediated currents with astrocytic contribution) as ischemic currents and spreading depolarization also have a well-known pathophysiological role in worsening consequences of stroke,traumatic brain injury,or epilepsy.One might assume that slow inward currents occurring with low frequency under physiological conditions might contribute to synaptic plasticity and memory formation.However,to state this,more experimental evidence from greater neuronal networks or the level of the individual is needed.In this review,I aimed to summarize findings on slow inward currents and to speculate on the potential functions of it.展开更多
Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless com...Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless communication systems.Although traditional JFSCE schemes alleviate the influence between FS and CE,they show deficiencies in dealing with hardware imperfection(HI)and deterministic line-of-sight(LOS)path.To tackle this challenge,we proposed a cascaded ELM-based JFSCE to alleviate the influence of HI in the scenario of the Rician fading channel.Specifically,the conventional JFSCE method is first employed to extract the initial features,and thus forms the non-Neural Network(NN)solutions for FS and CE,respectively.Then,the ELMbased networks,named FS-NET and CE-NET,are cascaded to capture the NN solutions of FS and CE.Simulation and analysis results show that,compared with the conventional JFSCE methods,the proposed cascaded ELM-based JFSCE significantly reduces the error probability of FS and the normalized mean square error(NMSE)of CE,even against the impacts of parameter variations.展开更多
Recently, chaos control and applications have become one of the frontier subjects innonlinear science. The synchronization (SYNC) of chaotic systems has become afascinating topic in the control of chaos since the pion...Recently, chaos control and applications have become one of the frontier subjects innonlinear science. The synchronization (SYNC) of chaotic systems has become afascinating topic in the control of chaos since the pioneer work was done by Pecora andCarroll and was extended later. We have made a review on progress of chaos control.Pecora and Carroll specially emphasized that the SYNC of chaotic systems can be展开更多
In this paper, two different ring networks with unidirectional couplings and with bidirectional couplings were discussed by theoretical analysis. It was found that the effects on synchronizing ability of the two diffe...In this paper, two different ring networks with unidirectional couplings and with bidirectional couplings were discussed by theoretical analysis. It was found that the effects on synchronizing ability of the two different structures by cutting a link are completely opposite. The synchronizing ability will decrease if the change is from bidirectional ring to bidirectional chain. Moreover, the change on synchronizing ability will be four times if the number of N is large enough. However, it will increase obviously from unidirectional ring to unidirectional chain. It will be N^2/(π^2) times if the number of N is large enough. The numerical simulations confirm the conclusion in quality. This paper also discusses the effects on synchronization by adding one link with different length d to these two different structures. It can be seen that the effects are different. Theoretical results are accordant to numerical simulations. Synchronization is an essential physics problem. These results proposed in this paper have some important reference meanings on the real world networks, such as the bioecological system networks, the designing of the circuit, etc.展开更多
文摘This paper builds up an accurate nonlinear mathematical model of anelectro-hydraulic force/ torque servo control system, and provides a thorough theoretical analysison the feedforward compensation for extraneous force/torque, whose limitation is analyzed andrevealed. The nonlinear factors and the servo valve dynamics have much influence on the systemcharacteristics. Subsequently a velocity syn-chronizing-compensation method by using the controlsignal of the control actuator is proposed, which can reduce the lagging effects for the betterperformance. For the reason of similarity between the model of control actuator and that of the loadsimulator, the proposed method performs well against the influence of nonlinear factors. Thesimulations and the experiments confirm that this control scheme results in a quick response,robustness, and excellent ability against disturbance.
基金Projects(50574091, 50774084) supported by the National Natural Science Foundation of ChinaProject(50921001) supported by the Innovative Research Group Science Foundation,ChinaProject supported by Jiangsu Scientific Researching Fund Project ("333" Project),China
文摘A new concept of banana vibrating screen which has the same effect as traditional banana vibrating screen in a new way was put forward.The dynamic model of vibrating screen was established and its working principle was analyzed when the action line of the exciting force did not act through the centroid of screen box.Moreover,the dynamic differential equations of centroid and screen surface were obtained.The motions of centroid and screen surface were simulated with actual parameters of the design example in Matlab/Simulink.The results show that not only the amplitude has a significant decrease from 9.38 to 4.10 mm,but also the throwing index and vibrating direction angle have a significant decrease from 10.49 to 4.59,and from 58.10° to 33.29°,respectively,along the screen surface,which indicates that motion characteristics of vibrating screen are consistent with those of traditional banana vibrating screen only by means of a single angle of screen surface.What's more,such banana vibrating screen of variable linear trajectory with greater processing capacity could be obtained by adjusting the relative position of force center and the centroid of screen box properly.
文摘The velocity feedback in a load simulator with a motor synchronizing in position is achieved by installing a tachometer generator between tile shaft and shell of the loading motor, and thes not only decreases the disturbance torque of tile load simlilator greatly but also improves its dynamic performance.
基金Project supported by the National Natural Science foundation of China(Grant Nos.51276081 and 11326193)the Students’ Research Foundation of Jiangsu University,China(Grant Nos.Y13A127 and 12A415)
文摘Cluster synchronization of nonlinear uncertain complex networks with desynchronizing impulse is explored. First of all, a feedback controller is employed, based on the Lyapunov stability theorem and Lipschitz condition, to guarantee that the uncertain complex networks with desynchronizing impulse synchronize with an object trajectory. Furthermore, a synchronizing impulse controller is presented, which is more efficiently and directly used to achieve the cluster synchronization. Finally, numerical examples are examined to show the effectiveness of the proposed methods.
基金Key Creative Project of Shanghai Education Community,China(No.13ZZ050)Key Basic Research Project of Shanghai,China(No.12JC1400400)
文摘This work investigates synchronization of two fractional unified hyperchaotic systems via impulsive control.The stable theory about impulsive fractional equation is studied based on the stable theory about fractional linear system.Then according to the theorem proposed the sufficient condition on feedback strength and impulsive interval are established to guarantee the synchronization.Numerical simulations show the effectiveness of the theorem.
文摘In this paper, we consider an abstract non-autonomous evolution equation with multiple delays in a Hilbert space H: u'(t) + Au(t) = F(u(t-r<sub>1</sub><sub></sub>),...,u((t-r<sub>n</sub><sub></sub>)) + g(t), where A: D(A)?H→H is a positive definite selfadjoint operator, F: H<sup>n</sup><sub>a</sub> → H is a nonlinear mapping, r<sub>1</sub>,...,r<sub>n</sub> are nonnegative constants, and g(t)∈ C(□;H) is bounded. Motivated by [1] [2], we obtain the existence and stability of synchronizing solution under some convergence condition. By this result, we provide a general approach for guaranteeing the existence and stability of periodic, quasiperiodic or almost periodic solution of the equation.
文摘In this paper we present the control and synchronization of a coupled Bragg acousto-optic bistable map system using nonlinear feedback technology. This nonlinear feedback technology is useful to control a temporally chaotic system as well as a spatiotemporally chaotic system. It can be extended to synchronize the spatiotemporal chaos. It can work in a wide range of the controlled and synchronized signals, so it can decrease the sensitivity down to a noise level. The synchronization can be obtained by the analysis of the largest conditional Lyapunov exponent spectrum, and easily implemented in practical systems just by adjusting the coupled strength without any pre-knowledge of the dynamic system required.
文摘This paper investigates the synchronization between integer-order and fractional-order chaotic systems. By intro- ducing fractional-order operators into the controllers, the addressed problem is transformed into a synchronization one among integer-order systems. A novel general method is presented in the paper with rigorous proof. Based on this method, effective controllers are designed for the synchronization between Lorenz systems with an integer order and a fractional order, and for the synchronization between an integer-order Chen system and a fractional-order Liu system. Numerical results, which agree well with the theoretical analyses, are also given to show the effectiveness of this method.
文摘In this paper, the problem of the finite-time synchronization of two uncertain chaotic gyros is discussed. The parameters of both the master and the slave gyros are assumed to be unknown in advance. The effects of model uncertainties and input nonlinearities are also taken into account. An appropriate adaptation law is proposed to tackle the gyros' unknown parameters. Based on the adaptation law and the finite-time control technique, proper control laws are introduced to ensure that the trajectories of the slave gyro converge to the trajectories of the master gyro in a given finite time. Simulation results show the applicability and the efficiency of the proposed finite-time controller.
文摘The present study explores an IEEE1588 Synchronizing System for smart distribution grid based on Industrial Ethernet. The paper first analyzes the communication system in distribution network and then proposed the project of time synchronizing system using IEEE1588 in distribution network. The study focuses on rational clock correcting time region segmentation, selecting the best clock source injection point and multiple redundant methods when correcting time method lose efficacy, etc. The precision of time synchronizing is better than that of 1 millisecond.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11162004,10972011,and 11001069)the Natural Science Foundation of Zhejiang Province,China(Grant Nos.LQ12A01003 and LQ12A01002)the Science Foundation of Guangxi Province,China(Grant No.2013GXNS-FAA019006)
文摘In this paper, we propose a well-designed network model with a parameter and study full and partial synchronization of the network model based on the stability analysis. The network model is composed of a star-coupled subnetwork and a globally coupled subnetwork. By analyzing the special coupling configuration, three control schemes are obtained for synchronizing the network model. Further analysis indicates that even if the inner couplings in each subnetwork are very weak, two of the control schemes are still valid. In particular, if the outer coupling weight parameter 0 is larger than (n2 - 2n)/4, or the subnetwork size n is larger than 02, the two subnetworks with weak inner couplings can achieve synchronization. In addition, the synchronizability is independent of the network size in case of 0 〈 0 〈 n/(n + 1 ). Finally, we carry out some numerical simulations to confirm the validity of the obtained control schemes. It is worth noting that the main idea of this paper also applies to any network consisting of a dense subnetwork and a sparse network.
文摘It is shown that synchronization, in a weak sense, can be achieved between two-parameter non-matching systems by using the adaptive control method. In essence, this requires just a scalar signal transmitted from the drive to the response system. Two typical chaotic systems, i.e., Lorenz and Rossler system, are taken as examples of applications in this paper.
文摘The IEEE1588 network time synchronization, matched with smart substation information network transmission, is becoming the next generation advanced data synchronization of the smart substation. It is known that the inherent asymmetry error of the network synchronization approach in the smart substation is highlighted, which is concerned particularly. This paper models the synchronization process of the IEEE1588 based on the communication simulation software of OPNET Modeler. Firstly, it builds the models of master-slave clock, IEEE1588 protocol and network synchroniza- tion model, and analyzes the composition and influencing factors of the asymmetry error. Secondly, it quantitatively analyzes the influence of the synchronous asymmetric error of the IEEE1588 affected by the network status differences and the clock synchronization signal transmission path differences. Then its correction method is analyzed, in order to improve the IEEE1588 synchronization reliability and gives the solutions to its application in smart substation.
基金The project supported by China National Foundation of Nuclear Sciencethe National Project of Science and Technology for Returned Students
文摘Chaotic synchronization can be achieved by large enough external noise strength.It is shown that a pair of generic systems in the same potential evolving to equilibrium thr-ough standard Langevin dynamics with the same noise collapse into the same orbits at longtime.We now extend the above idea to two identical hyperchaotic systems of generalizedvan der Pol oscillator.We then have Langevin equations as follows.
基金The project supported by Nuclear Science Foundation of China and the National Project of Science and Technology for REturned Students.
文摘Coupled oscillators are common in many scientific areas,such as optics,communications,engi-neering,biology,etc.The synchronization of oscillators has important practical applications.This letter focuses on synchronization of coupled hyperchaotic oscillators,which exists in natureand in laboratory and is very important.
基金funded by the National Research Developm ent and Innovation Office (NKFIH-K1468 73) (to BP)。
文摘Slow inward currents are known as neuronal excitatory currents mediated by glutamate release and activation of neuronal extra synaptic N-met hyl-D-aspartate receptors with the contribution of astrocytes.These events are significantly slower than the excitatory postsynaptic currents.Parameters of slow inward currents are determined by seve ral factors including the mechanisms of astrocytic activation and glutamate release,as well as the diffusion pathways from the release site towards the extra synaptic recepto rs.Astrocytes are stimulated by neuronal network activity,which in turn excite neurons,forming an astrocyte-neuron feedback loop.Mostly as a consequence of brain edema,astrocytic swelling can also induce slow inward currents under pathological conditions.There is a growing body of evidence on the roles of slow inward currents on a single neuron or local network level.These events often occur in synchro ny on neurons located in the same astrocytic domain.Besides synchronization of neuronal excitability,slow inward currents also set synaptic strength via eliciting timing-dependent synaptic plasticity.In addition,slow inward currents are also subject to non-synaptic plasticity triggered by long-la sting stimulation of the excitatory inputs.Of note,there might be important regionspecific differences in the roles and actions triggering slow inward currents.In greater networks,the pathophysiological roles of slow inward currents can be better understood than physiological ones.Slow inward currents are identified in the pathophysiological background of autism,as slow inward currents drive early hypersynchrony of the neural networks.Slow inward currents are significant contributors to paroxysmal depolarizational shifts/interictal spikes.These events are related to epilepsy,but also found in Alzheimer's disease,Parkinson's disease,and stroke,leading to the decline of cognitive functions.Events with features overlapping with slow inward currents(excitatory,N-methyl-Daspartate-receptor mediated currents with astrocytic contribution) as ischemic currents and spreading depolarization also have a well-known pathophysiological role in worsening consequences of stroke,traumatic brain injury,or epilepsy.One might assume that slow inward currents occurring with low frequency under physiological conditions might contribute to synaptic plasticity and memory formation.However,to state this,more experimental evidence from greater neuronal networks or the level of the individual is needed.In this review,I aimed to summarize findings on slow inward currents and to speculate on the potential functions of it.
基金supported in part by the Sichuan Science and Technology Program(Grant No.2023YFG0316)the Industry-University Research Innovation Fund of China University(Grant No.2021ITA10016)+1 种基金the Key Scientific Research Fund of Xihua University(Grant No.Z1320929)the Special Funds of Industry Development of Sichuan Province(Grant No.zyf-2018-056).
文摘Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless communication systems.Although traditional JFSCE schemes alleviate the influence between FS and CE,they show deficiencies in dealing with hardware imperfection(HI)and deterministic line-of-sight(LOS)path.To tackle this challenge,we proposed a cascaded ELM-based JFSCE to alleviate the influence of HI in the scenario of the Rician fading channel.Specifically,the conventional JFSCE method is first employed to extract the initial features,and thus forms the non-Neural Network(NN)solutions for FS and CE,respectively.Then,the ELMbased networks,named FS-NET and CE-NET,are cascaded to capture the NN solutions of FS and CE.Simulation and analysis results show that,compared with the conventional JFSCE methods,the proposed cascaded ELM-based JFSCE significantly reduces the error probability of FS and the normalized mean square error(NMSE)of CE,even against the impacts of parameter variations.
基金Project supported in part by the China National Foundation of Nuclear Sciencethe National Project of Science and Technology for Returned Students.
文摘Recently, chaos control and applications have become one of the frontier subjects innonlinear science. The synchronization (SYNC) of chaotic systems has become afascinating topic in the control of chaos since the pioneer work was done by Pecora andCarroll and was extended later. We have made a review on progress of chaos control.Pecora and Carroll specially emphasized that the SYNC of chaotic systems can be
基金the National Basic Research 973 Program of China (Grant No. 2006CB708302)the National Natural Science Foundation of China (Grant Nos. 60574045 and 90604005)
文摘In this paper, two different ring networks with unidirectional couplings and with bidirectional couplings were discussed by theoretical analysis. It was found that the effects on synchronizing ability of the two different structures by cutting a link are completely opposite. The synchronizing ability will decrease if the change is from bidirectional ring to bidirectional chain. Moreover, the change on synchronizing ability will be four times if the number of N is large enough. However, it will increase obviously from unidirectional ring to unidirectional chain. It will be N^2/(π^2) times if the number of N is large enough. The numerical simulations confirm the conclusion in quality. This paper also discusses the effects on synchronization by adding one link with different length d to these two different structures. It can be seen that the effects are different. Theoretical results are accordant to numerical simulations. Synchronization is an essential physics problem. These results proposed in this paper have some important reference meanings on the real world networks, such as the bioecological system networks, the designing of the circuit, etc.