Software synchronous sampling is widely employed in periodic signal measurement, but measurement errors occur very commonly. This paper analyses the cause of the errors, deduces the mathematical model for the measure...Software synchronous sampling is widely employed in periodic signal measurement, but measurement errors occur very commonly. This paper analyses the cause of the errors, deduces the mathematical model for the measurement errors in measuring RMS voltage, RMS current and active power using the software synchronous sampling method. Some measures to reduce the errors are put forward by simulating.展开更多
To analyze the influence of time synchronization error,phase synchronization error,frequency synchronization error,internal delay of the transceiver system,and range error and angle error between the unit radars on th...To analyze the influence of time synchronization error,phase synchronization error,frequency synchronization error,internal delay of the transceiver system,and range error and angle error between the unit radars on the target detection performance,firstly,a spatial detection model of distributed high-frequency surface wave radar(distributed-HFSWR)is established in this paper.In this model,a method for accurate extraction of direct wave spectrum based on curve fitting is proposed to obtain accurate system internal delay and frequency synchronization error under complex electromagnetic environment background and low signal to noise ratio(SNR),and to compensate for the shift of range and Doppler frequency caused by time-frequency synchronization error.The direct wave component is extracted from the spectrum,the range estimation error and Doppler estimation error are reduced by the method of curve fitting,and the fitting accuracy of the parameters is improved.Then,the influence of frequency synchronization error on target range and radial Doppler velocity is quantitatively analyzed.The relationship between frequency synchronization error and radial Doppler velocity shift and range shift is given.Finally,the system synchronization parameters of the trial distributed-HFSWR are obtained by the proposed spectrum extraction method based on curve fitting,the experimental data is compensated to correct the shift of the target,and finally the correct target parameter information is obtained.Simulations and experimental results demonstrate the superiority and correctness of the proposed method,theoretical derivation and detection model proposed in this paper.展开更多
The synchronous tracking control problem of a hydraulic parallel manipulator with six degrees of freedom (DOF) is complicated since the inclusion of hydraulic elements increases the order of the system.To solve this p...The synchronous tracking control problem of a hydraulic parallel manipulator with six degrees of freedom (DOF) is complicated since the inclusion of hydraulic elements increases the order of the system.To solve this problem,cascade control method with an inner/outer-loop control structure is used,which masks the hydraulic dynamics with the inner-loop so that the designed controller takes into account of both the mechanical dynamics and the hydraulic dynamics of the manipulator.Furthermore,a cross-coupling control approach is introduced to the synchronous tracking control of the manipulator.The position synchronization error is developed by considering motion synchronization between each actuator joint and its adjacent ones based on the synchronous goal.Then,with the feedback of both position error and synchronization error,the tracking is proven to guarantee that both the position errors and synchronization errors asymptotically converge to zero.Moreover,the effectiveness of the proposed approach is verified by the experimental results performed with a 6-DOF hydraulic parallel manipulator.展开更多
Forward-backward algorithm, used by watermark decoder for correcting non-binary synchronization errors, requires to traverse a very large scale trellis in order to achieve the proper posterior probability, leading to ...Forward-backward algorithm, used by watermark decoder for correcting non-binary synchronization errors, requires to traverse a very large scale trellis in order to achieve the proper posterior probability, leading to high computational complexity. In order to reduce the number of the states involved in the computation, an adaptive pruning method for the trellis is proposed. In this scheme, we prune the states which have the low forward-backward quantities below a carefully-chosen threshold. Thus, a wandering trellis with much less states is achieved, which contains most of the states with quite high probability. Simulation results reveal that, with the proper scaling factor, significant complexity reduction in the forward-backward algorithm is achieved at the expense of slight performance degradation.展开更多
Bistatic/multistatic radar has great potential advantages over its monostatic counterpart. However, the separation of a transmitter and a receiver leads to difficulties in locating the target position accurately and g...Bistatic/multistatic radar has great potential advantages over its monostatic counterpart. However, the separation of a transmitter and a receiver leads to difficulties in locating the target position accurately and guaranteeing space-timefrequency synchronization of the transmitter and the receiver.The error model of space-time-frequency synchronization in a motion platform of bistatic/multistatic radar is studied. The relationship between the space synchronization error and the transmitter platform position, receiver platform position, moving state, and beam pointing error, is analyzed. The effect of space synchronization error on target echo power is studied. The target scattering characteristics are restructured by many separate scattering centers of the target in high frequency regions. Based on the scattering centers model of the radar target, this radar target echo model and the simulation method are discussed. The algorithm of bistatic/multistatic radar target echo accurately reflects the scattering characteristics of the radar target, pulse modulation speciality of radar transmitting signals, and spacetime-frequency synchronization error characteristics between the transmitter station and the receiver station. The simulation of bistatic radar is completed in computer, and the results of the simulation validate the feasibility of the method.展开更多
The performance degradation of an orthogonal frequency division multiplexing (OFDM) systems due to clock synchronization error is analyzed and a pilot-aided maximum likelihood (ML) estimating method is proposed to cor...The performance degradation of an orthogonal frequency division multiplexing (OFDM) systems due to clock synchronization error is analyzed and a pilot-aided maximum likelihood (ML) estimating method is proposed to correct it. The proposed algorithm enables clock synchronization error estimation from a pilot whose duration is only two symbol periods. The study shows that this method is simple and exact. The clock synchronization error can be corrected almost entirely.展开更多
This paper examines dependencies of voice and video contents on human perception of group (or inter-destination) synchronization error in remote learning by Quality of Experience (QoE) assessment. In our assessment, w...This paper examines dependencies of voice and video contents on human perception of group (or inter-destination) synchronization error in remote learning by Quality of Experience (QoE) assessment. In our assessment, we use two videos and three voices (two voices for one video and one voice for the other video). We also investigate influences of silence periods in the voices and temporal relations between the voices and videos (called the tightly-coupled and loosely-coupled contents here). The voices are spoken by a teacher according to the videos. Each subject as a student assesses the group synchronization quality by watching each lecture video and the corresponding explanation voice, and then the subject answers whether he/she perceives the group synchronization error or not. As a result, assessment results illustrate that silence periods mitigate the perception rate of the error, and we can also find that we can more easily perceive the error for tightly-coupled contents than loosely-coupled ones.展开更多
In the Davey-MacKay(DM) construction,the inner decoder treats unknown transmitted bits as random independent substitution errors. It limits the synchronization capability of the inner decoder, and thus weakens the err...In the Davey-MacKay(DM) construction,the inner decoder treats unknown transmitted bits as random independent substitution errors. It limits the synchronization capability of the inner decoder, and thus weakens the error-correcting capability of the DM construction.In order to improve the performance of the DM construction, an iterative decoding scheme is proposed, which iteratively utilizes the more accurate estimates of transmitted codewords. In the proposed scheme, the estimated average bit error rates and the estimated low-density parity-check(LDPC) codewords from the outer decoder are fed back into the inner decoder to update the synchronization process. Simulation results show that the proposed iterative decoding scheme significantly outperforms the traditional DM construction.展开更多
A mirror milling system(MMS)comprises two face-to-face five-axis machine tools,one for the cutting spindle and the other for the support tool.Since it is essential to maintain the cutter and support coaxial during the...A mirror milling system(MMS)comprises two face-to-face five-axis machine tools,one for the cutting spindle and the other for the support tool.Since it is essential to maintain the cutter and support coaxial during the cutting process,synchronous motion accuracy is the key index of the MMS.This paper proposed a novel method for measuring and estimating the synchronous motion accuracy of the dual five-axis machine tools.The method simultaneously detects errors in the tool center point(TCP)and tool axis direction(TAD)during synchronous motion.To implement the suggested method,a measurement device,with five high-precision displacement sensors was developed.A kinematic model was then developed to estimate the synchronous motion accuracy from the displacement sensor output.The screw theory was used to obtain the analytical expression of the inverse kinematic model,and the synchronous motion error was compensated and adjusted based on the inverse kinematic model of the dual five-axis machine tools.TCP and TAD quasi-static errors,such as geometric and backlash errors,were first compensated.By adjusting the servo parameters,the dynamic TCP and TAD errors,such as gain mismatch and reversal spike,were also reduced.The proposed method and device were tested in a large MMS,and the measured quasi-static and dynamic errors were all reduced when the compensation and adjustment method was used.Monte Carlo simulations were also used to estimate the uncertainty of the proposed scheme.展开更多
Chaotic synchronization is a branch of chaotic control. Nowadays, the research and application of chaotic synchronization have become a hot topic and one of the development directions is for the research on chaos. In ...Chaotic synchronization is a branch of chaotic control. Nowadays, the research and application of chaotic synchronization have become a hot topic and one of the development directions is for the research on chaos. In this paper, a universal nonlinear stateobserver is presented for a class of universal chaotic systems to realize the chaotic synchronization, according to the theory of state-observer in the modern control theory. And theoretic analysis and simulation results have illustrated the validity of the approach. Moreover, the approach of synchronization proposed in this paper is very easy, flexible and universal with high synchronization precision.When the approach is applied to secure communication, the results are satisfying.展开更多
Due to frequency-selective and time-variant property of wireless channel together with additive noise and mismatch of oscillators between transmitter and receiver, there are always time and frequency synchronization e...Due to frequency-selective and time-variant property of wireless channel together with additive noise and mismatch of oscillators between transmitter and receiver, there are always time and frequency synchronization errors in a practical OFDM system. To investigate the effect of the two kinds of errors on system performance, the average normalized interference power (NIP) is defined. A simple supper bound for NIP caused by time synchronization error (TSE) and the tighter upper bound for NIP resulting from frequency synchronization error (FSE) are derived independently. Simulations in typical short wave (SW) and medium wave (MW) channels further verify the correctness and tightness of these upper bounds. They actually provide good approximations to NIPs. Moreover, the upper bound for NIP resulting from FSE is tighter than traditional upper bound. Additionally, a new solution is proposed to relax the precision requirement for time synchronization algorithm, which can achieve a better tradeoff between time synchronization precision and bandwidth efficiency. These upper bounds will be useful in developing and choosing time and frequency synchronization algorithms in OFDM system to achieve a specific NIP value for a given channel condition.展开更多
The stability and synchronous performance are usually hard to be improved simultaneously in the biaxial cross-coupling position motion control system.Based on analyzing the characteristics of the cross-coupling contro...The stability and synchronous performance are usually hard to be improved simultaneously in the biaxial cross-coupling position motion control system.Based on analyzing the characteristics of the cross-coupling control system,a robust adaptive cross-coupling control strategy is proposed.To restrict influences of destabilizing factors and improve both of stability and synchronous performance,the strategy forces dual axes to track the same reference model using Narendra adaptive control theory.And then,a robust parameters adaptive law is proposed.The stability analysis of the proposed strategy is conducted by applying Lyapunov stability theory.Related simulations and experiments indicate that the proposed strategy can improve synchronous performance and stability simultaneously.展开更多
A new family of windows is constructed by convolutions via a few rectangular windows with same time width and is thus referred to as convolution windows. The expressions of the second-order up to the eighth-order conv...A new family of windows is constructed by convolutions via a few rectangular windows with same time width and is thus referred to as convolution windows. The expressions of the second-order up to the eighth-order convolution windows in both the time and frequency domains are derived. Their applications in high accuracy harmonic analysis of periodic signals are investigated. Comparisons between the proposed windows and some known windows with the same width shows that, when the synchronous deviation of data sampling is slight, the proposed ones have the least effect of spectral leakage. Therefore, the new windows are well suited for high accuracy harmonic analysis and parameter estimation for periodic signals. The error analysis and computer simulations show that the estimation errors, corresponding to frequency, amplitude and phase of every harmonic component of a signal, are proportional to the pth power of the relative frequency deviation in case of the pth-order convolution window is applied to windowing signal of approximately p cycles. By introducing real time adjustment in sampling interval, the proposed algorithm can adaptively trace signal frequency and lead to less sampling synchronous deviation. The proposed approach has the advantages of easy implementation and high measure precision and can be used in harmonic analysis of quasi-periodic signals whose fundamental frequency drifts slowly with time.展开更多
When interharmonics exist in power system signals,large errors emerge in traditional time domain reactive power measurement.In this paper,we present a novel time domain integral method with good effect of restraining ...When interharmonics exist in power system signals,large errors emerge in traditional time domain reactive power measurement.In this paper,we present a novel time domain integral method with good effect of restraining interharmonics,synchronization error,and white noise,as well as the principle of the selection of the sampling periods when employing this approach.The current signal and phase-shifted voltage signal are reconstructed after the harmonic components of signals are extracted,so that the interharmonics are filtered.The influence of the synchronization error on the measurement is reduced through removing the weight coefficients of the reactive components.In the simulation,we apply several cosine windows to the proposed method and analyze signals containing both harmonics and interharmonics.The results show that,in the presence of interharmonics,synchronization error,and white noise (with a fundamental signal-to-noise ratio of 40 dB) all together,the relative errors are within the magnitude of 10 4,which perfectly satisfies the practical requirement.展开更多
文摘Software synchronous sampling is widely employed in periodic signal measurement, but measurement errors occur very commonly. This paper analyses the cause of the errors, deduces the mathematical model for the measurement errors in measuring RMS voltage, RMS current and active power using the software synchronous sampling method. Some measures to reduce the errors are put forward by simulating.
基金supported by the National Natural Science Foundation of China(61701140).
文摘To analyze the influence of time synchronization error,phase synchronization error,frequency synchronization error,internal delay of the transceiver system,and range error and angle error between the unit radars on the target detection performance,firstly,a spatial detection model of distributed high-frequency surface wave radar(distributed-HFSWR)is established in this paper.In this model,a method for accurate extraction of direct wave spectrum based on curve fitting is proposed to obtain accurate system internal delay and frequency synchronization error under complex electromagnetic environment background and low signal to noise ratio(SNR),and to compensate for the shift of range and Doppler frequency caused by time-frequency synchronization error.The direct wave component is extracted from the spectrum,the range estimation error and Doppler estimation error are reduced by the method of curve fitting,and the fitting accuracy of the parameters is improved.Then,the influence of frequency synchronization error on target range and radial Doppler velocity is quantitatively analyzed.The relationship between frequency synchronization error and radial Doppler velocity shift and range shift is given.Finally,the system synchronization parameters of the trial distributed-HFSWR are obtained by the proposed spectrum extraction method based on curve fitting,the experimental data is compensated to correct the shift of the target,and finally the correct target parameter information is obtained.Simulations and experimental results demonstrate the superiority and correctness of the proposed method,theoretical derivation and detection model proposed in this paper.
基金Project(50375139) supported by the National Natural Science Foundation of ChinaProject(NCET-04-0545) supported by the New Century Excellent Talent Plan of the Ministry of Education of China
文摘The synchronous tracking control problem of a hydraulic parallel manipulator with six degrees of freedom (DOF) is complicated since the inclusion of hydraulic elements increases the order of the system.To solve this problem,cascade control method with an inner/outer-loop control structure is used,which masks the hydraulic dynamics with the inner-loop so that the designed controller takes into account of both the mechanical dynamics and the hydraulic dynamics of the manipulator.Furthermore,a cross-coupling control approach is introduced to the synchronous tracking control of the manipulator.The position synchronization error is developed by considering motion synchronization between each actuator joint and its adjacent ones based on the synchronous goal.Then,with the feedback of both position error and synchronization error,the tracking is proven to guarantee that both the position errors and synchronization errors asymptotically converge to zero.Moreover,the effectiveness of the proposed approach is verified by the experimental results performed with a 6-DOF hydraulic parallel manipulator.
基金supported in part by National Natural Science Foundation of China (61101114, 61671324) the Program for New Century Excellent Talents in University (NCET-12-0401)
文摘Forward-backward algorithm, used by watermark decoder for correcting non-binary synchronization errors, requires to traverse a very large scale trellis in order to achieve the proper posterior probability, leading to high computational complexity. In order to reduce the number of the states involved in the computation, an adaptive pruning method for the trellis is proposed. In this scheme, we prune the states which have the low forward-backward quantities below a carefully-chosen threshold. Thus, a wandering trellis with much less states is achieved, which contains most of the states with quite high probability. Simulation results reveal that, with the proper scaling factor, significant complexity reduction in the forward-backward algorithm is achieved at the expense of slight performance degradation.
基金supported by the National Natural Science Foundation of China(61271327)
文摘Bistatic/multistatic radar has great potential advantages over its monostatic counterpart. However, the separation of a transmitter and a receiver leads to difficulties in locating the target position accurately and guaranteeing space-timefrequency synchronization of the transmitter and the receiver.The error model of space-time-frequency synchronization in a motion platform of bistatic/multistatic radar is studied. The relationship between the space synchronization error and the transmitter platform position, receiver platform position, moving state, and beam pointing error, is analyzed. The effect of space synchronization error on target echo power is studied. The target scattering characteristics are restructured by many separate scattering centers of the target in high frequency regions. Based on the scattering centers model of the radar target, this radar target echo model and the simulation method are discussed. The algorithm of bistatic/multistatic radar target echo accurately reflects the scattering characteristics of the radar target, pulse modulation speciality of radar transmitting signals, and spacetime-frequency synchronization error characteristics between the transmitter station and the receiver station. The simulation of bistatic radar is completed in computer, and the results of the simulation validate the feasibility of the method.
文摘The performance degradation of an orthogonal frequency division multiplexing (OFDM) systems due to clock synchronization error is analyzed and a pilot-aided maximum likelihood (ML) estimating method is proposed to correct it. The proposed algorithm enables clock synchronization error estimation from a pilot whose duration is only two symbol periods. The study shows that this method is simple and exact. The clock synchronization error can be corrected almost entirely.
文摘This paper examines dependencies of voice and video contents on human perception of group (or inter-destination) synchronization error in remote learning by Quality of Experience (QoE) assessment. In our assessment, we use two videos and three voices (two voices for one video and one voice for the other video). We also investigate influences of silence periods in the voices and temporal relations between the voices and videos (called the tightly-coupled and loosely-coupled contents here). The voices are spoken by a teacher according to the videos. Each subject as a student assesses the group synchronization quality by watching each lecture video and the corresponding explanation voice, and then the subject answers whether he/she perceives the group synchronization error or not. As a result, assessment results illustrate that silence periods mitigate the perception rate of the error, and we can also find that we can more easily perceive the error for tightly-coupled contents than loosely-coupled ones.
基金supported in part by National Natural Science Foundation of China(61671324)the Director’s Funding from Qingdao National Laboratory for Marine Science and Technology
文摘In the Davey-MacKay(DM) construction,the inner decoder treats unknown transmitted bits as random independent substitution errors. It limits the synchronization capability of the inner decoder, and thus weakens the error-correcting capability of the DM construction.In order to improve the performance of the DM construction, an iterative decoding scheme is proposed, which iteratively utilizes the more accurate estimates of transmitted codewords. In the proposed scheme, the estimated average bit error rates and the estimated low-density parity-check(LDPC) codewords from the outer decoder are fed back into the inner decoder to update the synchronization process. Simulation results show that the proposed iterative decoding scheme significantly outperforms the traditional DM construction.
基金supported by the National Natural Science Foundation of China(Grant No.51875357)the State Key Program of National Natural Science Foundation of China(Grant No.U21B2081)the National Defense Science and Technology Excellence Youth Foundation(Grant No.2020-JCJQ-ZQ-079)。
文摘A mirror milling system(MMS)comprises two face-to-face five-axis machine tools,one for the cutting spindle and the other for the support tool.Since it is essential to maintain the cutter and support coaxial during the cutting process,synchronous motion accuracy is the key index of the MMS.This paper proposed a novel method for measuring and estimating the synchronous motion accuracy of the dual five-axis machine tools.The method simultaneously detects errors in the tool center point(TCP)and tool axis direction(TAD)during synchronous motion.To implement the suggested method,a measurement device,with five high-precision displacement sensors was developed.A kinematic model was then developed to estimate the synchronous motion accuracy from the displacement sensor output.The screw theory was used to obtain the analytical expression of the inverse kinematic model,and the synchronous motion error was compensated and adjusted based on the inverse kinematic model of the dual five-axis machine tools.TCP and TAD quasi-static errors,such as geometric and backlash errors,were first compensated.By adjusting the servo parameters,the dynamic TCP and TAD errors,such as gain mismatch and reversal spike,were also reduced.The proposed method and device were tested in a large MMS,and the measured quasi-static and dynamic errors were all reduced when the compensation and adjustment method was used.Monte Carlo simulations were also used to estimate the uncertainty of the proposed scheme.
文摘Chaotic synchronization is a branch of chaotic control. Nowadays, the research and application of chaotic synchronization have become a hot topic and one of the development directions is for the research on chaos. In this paper, a universal nonlinear stateobserver is presented for a class of universal chaotic systems to realize the chaotic synchronization, according to the theory of state-observer in the modern control theory. And theoretic analysis and simulation results have illustrated the validity of the approach. Moreover, the approach of synchronization proposed in this paper is very easy, flexible and universal with high synchronization precision.When the approach is applied to secure communication, the results are satisfying.
基金supported by the National Natural Science Foundation of China(Grant No.60496311).
文摘Due to frequency-selective and time-variant property of wireless channel together with additive noise and mismatch of oscillators between transmitter and receiver, there are always time and frequency synchronization errors in a practical OFDM system. To investigate the effect of the two kinds of errors on system performance, the average normalized interference power (NIP) is defined. A simple supper bound for NIP caused by time synchronization error (TSE) and the tighter upper bound for NIP resulting from frequency synchronization error (FSE) are derived independently. Simulations in typical short wave (SW) and medium wave (MW) channels further verify the correctness and tightness of these upper bounds. They actually provide good approximations to NIPs. Moreover, the upper bound for NIP resulting from FSE is tighter than traditional upper bound. Additionally, a new solution is proposed to relax the precision requirement for time synchronization algorithm, which can achieve a better tradeoff between time synchronization precision and bandwidth efficiency. These upper bounds will be useful in developing and choosing time and frequency synchronization algorithms in OFDM system to achieve a specific NIP value for a given channel condition.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2013CB035600)the National Natural Science Foundation of China(Grant No.51377121)
文摘The stability and synchronous performance are usually hard to be improved simultaneously in the biaxial cross-coupling position motion control system.Based on analyzing the characteristics of the cross-coupling control system,a robust adaptive cross-coupling control strategy is proposed.To restrict influences of destabilizing factors and improve both of stability and synchronous performance,the strategy forces dual axes to track the same reference model using Narendra adaptive control theory.And then,a robust parameters adaptive law is proposed.The stability analysis of the proposed strategy is conducted by applying Lyapunov stability theory.Related simulations and experiments indicate that the proposed strategy can improve synchronous performance and stability simultaneously.
基金This work was supported by the National Natural Science Foundation of China(Grant No.9931030).
文摘A new family of windows is constructed by convolutions via a few rectangular windows with same time width and is thus referred to as convolution windows. The expressions of the second-order up to the eighth-order convolution windows in both the time and frequency domains are derived. Their applications in high accuracy harmonic analysis of periodic signals are investigated. Comparisons between the proposed windows and some known windows with the same width shows that, when the synchronous deviation of data sampling is slight, the proposed ones have the least effect of spectral leakage. Therefore, the new windows are well suited for high accuracy harmonic analysis and parameter estimation for periodic signals. The error analysis and computer simulations show that the estimation errors, corresponding to frequency, amplitude and phase of every harmonic component of a signal, are proportional to the pth power of the relative frequency deviation in case of the pth-order convolution window is applied to windowing signal of approximately p cycles. By introducing real time adjustment in sampling interval, the proposed algorithm can adaptively trace signal frequency and lead to less sampling synchronous deviation. The proposed approach has the advantages of easy implementation and high measure precision and can be used in harmonic analysis of quasi-periodic signals whose fundamental frequency drifts slowly with time.
文摘When interharmonics exist in power system signals,large errors emerge in traditional time domain reactive power measurement.In this paper,we present a novel time domain integral method with good effect of restraining interharmonics,synchronization error,and white noise,as well as the principle of the selection of the sampling periods when employing this approach.The current signal and phase-shifted voltage signal are reconstructed after the harmonic components of signals are extracted,so that the interharmonics are filtered.The influence of the synchronization error on the measurement is reduced through removing the weight coefficients of the reactive components.In the simulation,we apply several cosine windows to the proposed method and analyze signals containing both harmonics and interharmonics.The results show that,in the presence of interharmonics,synchronization error,and white noise (with a fundamental signal-to-noise ratio of 40 dB) all together,the relative errors are within the magnitude of 10 4,which perfectly satisfies the practical requirement.