Sinocyclocheilus is a cave-dwelling cyprinid genus endemic to southwest China. Several species possess a conspicuous horn on their head, which has been suggested as a constructive troglomorphic trait but lacks substan...Sinocyclocheilus is a cave-dwelling cyprinid genus endemic to southwest China. Several species possess a conspicuous horn on their head, which has been suggested as a constructive troglomorphic trait but lacks substantial evidence. We used non- invasive, high spatial resolution synchrotron X-ray microtomography to investigate the three-dimensional (3D) morphology of the horn of Sinocyclocheilus hyalinus, one of eight such troglobiotic species. 3D renderings demonstrated the osteological components, which were comprised of a rear wall comprised of the supraoccipital bone, a remaining frontal wall with numerous fenestrae, and the bottom continuous with the parietal and epiotic. A horn cavity occurred within the horn. The fenestrae in the frontal wall were continuous in the horn cavity and showed elaborate channeling, and were, connected to the cranial cavity by soft tissue. We tentatively called this configuration the "otocornual connection" due to its anatomic and putative functional similarity to the otolateralic connection in clupeids and loricariids, which provide an indirect pathway to enhance perception of underwater sound signals. This study provides a functional morphology context for further histological and physiological investigations of such horn structures in Sinocyclocheilus cavefish, and we suggest that the horn might enhance acoustic perception to compensate for visual loss in subterranean life, which warrants future physiological examination as lab-reared S. hyalinus become available.展开更多
Sinocyclocheilus is a cave-dwelling cyprinid genus endemic to southwest China.Several species possess a conspicuous horn on their head,which has been suggested as a constructive troglomorphic trait but lacks substanti...Sinocyclocheilus is a cave-dwelling cyprinid genus endemic to southwest China.Several species possess a conspicuous horn on their head,which has been suggested as a constructive troglomorphic trait but lacks substantial evidence.We used non-invasive,high spatial resolution synchrotron X-ray microtomography to investigate the three-dimensional(3D)morphology of the horn of Sinocyclocheilus hyalinus,one of eight such troglobiotic species.3D renderings demonstrated the osteological components,which were comprised of a rear wall comprised of the supraoccipital bone,a remaining frontal wall with numerous fenestrae,and the bottom continuous with the parietal and epiotic.A horn cavity occurred within the horn.The fenestrae in the frontal wall were continuous in the horn cavity and showed elaborate channeling,and were,connected to the cranial cavity by soft tissue.We tentatively called this configuration the“otocornual connection”due to its anatomic and putative functional similarity to the otolateralic connection in clupeids and loricariids,which provide an indirect pathway to enhance perception of underwater sound signals.This study provides a functional morphology context for further histological and physiological investigations of such horn structures in Sinocyclocheilus cavefish,and we suggest that the horn might enhance acoustic perception to compensate for visual loss in subterranean life,which warrants future physiological examination as lab-reared S.hyalinus become available.展开更多
High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Exten...High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Extensive studies on the deformation mech-anisms of HEAs can guide microstructure control and toughness design,which is vital for understanding and studying state-of-the-art structural materials.Synchrotron X-ray and neutron diffraction are necessary techniques for materials science research,especially for in situ coupling of physical/chemical fields and for resolving macro/microcrystallographic information on materials.Recently,several re-searchers have applied synchrotron X-ray and neutron diffraction methods to study the deformation mechanisms,phase transformations,stress behaviors,and in situ processes of HEAs,such as variable-temperature,high-pressure,and hydrogenation processes.In this review,the principles and development of synchrotron X-ray and neutron diffraction are presented,and their applications in the deformation mechanisms of HEAs are discussed.The factors that influence the deformation mechanisms of HEAs are also outlined.This review fo-cuses on the microstructures and micromechanical behaviors during tension/compression or creep/fatigue deformation and the application of synchrotron X-ray and neutron diffraction methods to the characterization of dislocations,stacking faults,twins,phases,and intergrain/interphase stress changes.Perspectives on future developments of synchrotron X-ray and neutron diffraction and on research directions on the deformation mechanisms of novel metals are discussed.展开更多
The parasitic hydrogen evolution reaction(HER)in the negative half-cell of vanadium redox flow batteries(VRFBs)causes severe efficiency losses.Thus,a deeper understanding of this process and the accompanying bubble fo...The parasitic hydrogen evolution reaction(HER)in the negative half-cell of vanadium redox flow batteries(VRFBs)causes severe efficiency losses.Thus,a deeper understanding of this process and the accompanying bubble formation is crucial.This benchmarking study locally analyzes the bubble distribution in thick,porous electrodes for the first time using deep learning-based image segmentation of synchrotron X-ray micro-tomograms.Each large three-dimensional data set was processed precisely in less than one minute while minimizing human errors and pointing out areas of increased HER activity in VRFBs.The study systematically varies the electrode potential and material,concluding that more negative electrode potentials of-200 m V vs.reversible hydrogen electrode(RHE)and lower cause more substantial bubble formation,resulting in bubble fractions of around 15%–20%in carbon felt electrodes.Contrarily,the bubble fractions stay only around 2%in an electrode combining carbon felt and carbon paper.The detected areas with high HER activity,such as the border subregion with more than 30%bubble fraction in carbon felt electrodes,the cutting edges,and preferential spots in the electrode bulk,are potential-independent and suggest that larger electrodes with a higher bulk-to-border ratio might reduce HER-related performance losses.The described combination of electrochemical measurements,local X-ray microtomography,AI-based segmentation,and 3D morphometric analysis is a powerful and novel approach for local bubble analysis in three-dimensional porous electrodes,providing an essential toolkit for a broad community working on bubble-generating electrochemical systems.展开更多
Pseudocapacitive materials that store charges via reversible surface or near-surface faradaic reactions are capable of overcoming the capacity limitations of electrical double-layer capacitors.Revealing the structure...Pseudocapacitive materials that store charges via reversible surface or near-surface faradaic reactions are capable of overcoming the capacity limitations of electrical double-layer capacitors.Revealing the structure–activity relationship between the microstructural features of pseudocapacitive materials and their electrochemical performance on the atomic scale is the key to build high-performance capacitor-type devices containing ideal pseudocapacitance effect.Currently,the high brightness(flux),and spectral and coherent nature of synchrotron X-ray analytical techniques make it a powerful tool for probing the structure–property relationship of pseudocapacitive materials.Herein,we report a comprehensive and systematic review of four typical characterization techniques(synchrotron X-ray diffraction,pair distribution function[PDF]analysis,soft X-ray absorption spectroscopy,and hard X-ray absorption spectroscopy)for the study of pseudocapacitance mechanisms.In addition,we offered significant insights for understanding and identifying pseudocapacitance mechanisms(surface redox pseudocapacitance,intercalation pseudocapacitance,and the extrinsic pseudocapacitance phenomenon in battery materials)by combining in situ hard XAS and electrochemical analyses.Finally,a perspective for further depth of understanding into the pseudocapacitance mechanism using synchrotron X-ray analytical techniques is proposed.展开更多
The unit-cell parameters and volumes of geikielite(MgTiO_(3))and ilmenite(FeTiO_(3))were investigated at high temperatures up to 700 K and ambient pressure,using in-situ angle-dispersive synchrotron X-ray diffraction....The unit-cell parameters and volumes of geikielite(MgTiO_(3))and ilmenite(FeTiO_(3))were investigated at high temperatures up to 700 K and ambient pressure,using in-situ angle-dispersive synchrotron X-ray diffraction.No phase transition was detected over the experimental temperature range.Using(Berman in J Petrol29:445-522,1988.10.1093/petrology/29.2.445)equations to fit the temperature-volume data,the volumetric thermal expansion coefficients at ambient conditions(α_(V0))of MgTiO_(3) and FeTiO_(3) were obtained as follows:2.55(6)×10^(-5)K^(-1)and 2.82(10)×10^(-5)K^(-1),respectively.We infer that the larger effective ionic radius of Fe^(2+)(Ⅵ)(0.78 A)than that of Mg^(2+)(Ⅵ)(0.72?)renders FeTiO_(3)has a larger volumetric thermal expansivity than MgTiO_(3).Simultaneously,the refined axial thermal expansion coefficients under ambient conditions areα_(a0)=0.74(3)×10^(-5)K^(-1)andα_(c0)=1.08(5)×10^(-5)K^(-1)for the aaxis and c-axis of MgTiO_(3),respectively,andα_(a0)=0.95(5)×10^(-5)K^(-1)andα_(c0)=0.92(12)×10^(-5)K^(-1)for the aaxis and c-axis of FeTiO_(3),respectively.The axial thermal expansivity of MgTiO_(3) is anisotropic,but that of FeTiO_(3) is nearly isotropic.We infer that the main reason for the different axial thermal expansivity between MgTiO_(3) and FeTiO_(3) is that the thermal expansion mode of the Mg-O bond in MgTiO_(3) is different from that of the Fe-O bonds in FeTiO_(3).展开更多
The relative intensities of L-subshell x-ray fluorescence(XRF)for elements with atomic numbers 62≤Z≤83 were measured at two excitation energies,18 keV and 23 keV,using a synchrotron radiation source at a beamline of...The relative intensities of L-subshell x-ray fluorescence(XRF)for elements with atomic numbers 62≤Z≤83 were measured at two excitation energies,18 keV and 23 keV,using a synchrotron radiation source at a beamline of the Synchrotron Light Center for Experimental Science and Applications in the Middle East(SESAME),Jordan.The experimentally measured results of the relative intensities were compared with the calculated results using the subshell fluorescence yield and the Coster-Kronig transition probabilities recommended by Campbell and the values based on the Dirac-Hartree-Slater model by Puri.The experimental and theoretical results are in agreement.In this work,L XRF relative intensities for the elements Sm,Gd,Tb,Er,Ta,W,Re,Hg,Pb and Bi at energies of 18 keV and 23 keV were measured.展开更多
Transition metal sulfides have been regarded as promising anode materials for sodium-ion batteries(SIB).However,they face the challenges of poor electronic conductivity and large volume change,which result in capacity...Transition metal sulfides have been regarded as promising anode materials for sodium-ion batteries(SIB).However,they face the challenges of poor electronic conductivity and large volume change,which result in capacity fade and low rate capability.In this work,a composite containing ultrasmall CoS(~7 nm)nanoparticles embedded in heteroatom(N,S,and O)-doped carbon was synthesized by an efficient one-step sulfidation process using a Co(Salen)precursor.The ultrasmall CoS nanoparticles are beneficial for mechanical stability and shortening Na-ions diffusion pathways.Furthermore,the N,S,and O-doped defect-rich carbon provides a robust and highly conductive framework enriched with active sites for sodium storage as well as mitigates volume expansion and polysulfide shuttle.As anode for SIB,CoS@HDC exhibits a high initial capacity of 906 mA h g^(-1)at 100 mA g^(-1)and a stable long-term cycling life with over 1000 cycles at 500 mA g^(-1),showing a reversible capacity of 330 mA h g^(-1).Meanwhile,the CoS@HDC anode is proven to maintain its structural integrity and compositional reversibility during cycling.Furthermore,Na-ion full batteries based on the CoS@HDC anode and Na_(3)V_(2)(PO_(4))_(3)cathode demonstrate a stable cycling behavior with a reversible specific capacity of~200 m A h g^(-1)at least for 100 cycles.Moreover,advanced synchrotron operando X-ray diffraction,ex-situ X-ray absorption spectroscopy,and comprehensive electrochemical tests reveal the structural transformation and the Co coordination chemistry evolution of the CoS@HDC during cycling,providing fundamental insights into the sodium storage mechanism.展开更多
The construction of a new beamline,BL10U1,was completed at the Shanghai synchrotron radiation facility in 2020.This multipurpose beamline was designed to provide X-ray scattering techniques such as ultra-small-angle X...The construction of a new beamline,BL10U1,was completed at the Shanghai synchrotron radiation facility in 2020.This multipurpose beamline was designed to provide X-ray scattering techniques such as ultra-small-angle X-ray scattering(USAXS),small-angle X-ray scattering(SAXS),wide-angle X-ray scattering,and microfocus SAXS(μSAXS)for a broad user community.To realize fast time-resolved USAXS experiments,the beamline adopted an in-vacuum undulator with a total length of 1.6 m as the photon source.An in-house cryogenic-cooled double multilayer monochromator was installed to deliver a photon flux of approximately 10^(13) photons/s at a photon energy of 10 keV.The three-year successful operation of this beamline demonstrated that the monochromator operated smoothly,as expected.BL10U1 has three end stations in succession:USAXS end station,μSAXS end station,and end station for industrial applications.The minimum scattering vector q~0.0042 nm^(-1) at 10 keV can be achieved at the USAXS end station equipped with a 28 m-long and 1.8 m-diameter vacuum flight tube.At theμSAXS end station,a beam spot of less than 10×8μm was achieved for micro-SAXS experiments.In contrast,in situ experimental instruments up to 5 m high and 8 m wide can be mounted at the industrial application end station,which offers industrial scientists the opportunity to use their large industrial equipment.BL10U1 opens up a new capability to investigate phenomena such as non-equilibrium and dynamic processes of materials with a wide length scale from angstroms to micrometers with millisecond time resolution.In this paper,we also report beamline design considerations and commissioning results.展开更多
We report on using synthetic silicon for a high-precision X-ray polarimeter comprising a polarizer and an analyzer,each based on a monolithic channel-cut crystal used at multiple Brewster reflections with a Bragg angl...We report on using synthetic silicon for a high-precision X-ray polarimeter comprising a polarizer and an analyzer,each based on a monolithic channel-cut crystal used at multiple Brewster reflections with a Bragg angle very close to 45°.Experiments were performed at the BL09B bending magnet beamline of the Shanghai Synchrotron Radiation Facility using a Si(800)crystal at an X-ray energy of 12.914 keV.A polarization purity of 8.4×10^(-9)was measured.This result is encouraging,as the measured polarization purity is the best-reported value for the bending magnet source.Notably,this is the firstly systematic study on the hard X-ray polarimeter in China,which is crucial for exploring new physics,such as verifying vacuum birefringence.展开更多
The hard X-ray nanoprobe beamline BL13U is a phase-Ⅱ beamline project at the Shanghai Synchrotron Radiation Facility.The beamline aims to enable comprehensive experiments at high spatial resolutions ranging from 50 t...The hard X-ray nanoprobe beamline BL13U is a phase-Ⅱ beamline project at the Shanghai Synchrotron Radiation Facility.The beamline aims to enable comprehensive experiments at high spatial resolutions ranging from 50 to 10 nm. The X-ray energy range of the beamline, 5–25 keV, can detect most elements in the periodic table. Two operating modes were designed to accommodate the experimental requirements of high-energy resolution or high photon flux, respectively. X-ray nanofluorescence, nanodiffraction, and coherent diffraction imaging are developed as the main experimental techniques for BL13U. This paper describes the beamline optics, end station configurations, experimental methods under development, and preliminary test results. This comprehensive overview aims to provide a clear understanding of the beamline capabilities and potential applications.展开更多
This study presents a new method for characterizing the thermal lattice deformation of a monochromator with high precision under service conditions and first reports the operando measurements of nanoscale thermal latt...This study presents a new method for characterizing the thermal lattice deformation of a monochromator with high precision under service conditions and first reports the operando measurements of nanoscale thermal lattice deformation on a double-crystal monochromator at different incident powers.The nanoscale thermal lattice deformation of the monochromator first crystal was obtained by analyzing the intensity of the distorted DuMond diagrams.DuMond diagrams of the 333 diffraction index,sensitive to lattice deformation,were obtained directly using a 2D detector and an analyzer crystal orthogonal to the monochromator.With increasing incident power and power density,the maximum height of the lattice deformation increased from 3.2 to 18.5 nm,and the deformation coefficient of the maximum height increased from 1.1 to 3.2 nm/W.The maximum relative standard deviation was 4.2%,and the maximum standard deviation was 0.1 nm.Based on the measured thermal deformations,the flux saturation phenomenon and critical point for the linear operation of the monochromator were predicted with increasing incident power.This study provides a simple solution to the problem of the lower precision of synchrotron radiation monochromator characterizations compared to simulations.展开更多
Semiconductor materials exemplify humanity's unwavering pursuit of enhanced performance,efficiency,and functionality in electronic devices.From its early iterations to the advanced variants of today,this field has...Semiconductor materials exemplify humanity's unwavering pursuit of enhanced performance,efficiency,and functionality in electronic devices.From its early iterations to the advanced variants of today,this field has undergone an extraordinary evolution.As the reliability requirements of integrated circuits continue to increase,the industry is placing greater emphasis on the crystal qualities.Consequently,conducting a range of characterization tests on the crystals has become necessary.This paper will examine the correlation between crystal quality,device performance,and production yield,emphasizing the significance of crystal characterization tests and the important role of high-precision synchrotron radiation X-ray topography characterization in semiconductor analysis.Finally,we will cover the specific applications of synchrotron radiation characterization in the development of semiconductor materials.展开更多
The layout and characteristics of the hard X-ray spectroscopy beamline(BL11B)at the Shanghai synchrotron radiation facility are described herein.BL11B is a bending-magnet beamline dedicated to conventional and millise...The layout and characteristics of the hard X-ray spectroscopy beamline(BL11B)at the Shanghai synchrotron radiation facility are described herein.BL11B is a bending-magnet beamline dedicated to conventional and millisecond-scale quick-scanning X-ray absorption fine structures.It is equipped with a cylindrical collimating mirror,a double-crystal monochromator comprising Si(111)and Si(311),a channel-cut quick-scanning Si(111)monochromator,a toroidal focusing mirror,and a high harmonics rejection mirror.It can provide 5-30 keV of X-rays with a photon flux of~5×10^(11)photons/s and an energy resolution of~1.31×10^(-4)at 10 keV.The performance of the beamline can satisfy the demands of users in the fields of catalysis,materials,and environmental science.This paper presents an overview of the beamline design and a detailed description of its performance and capabilities.展开更多
The ultrahard X-ray multifunctional application beamline(BL12SW)is a phase-II beamline project at the Shanghai Syn-chrotron Radiation Facility.The primary X-ray techniques used at the beamline are high-energy X-ray di...The ultrahard X-ray multifunctional application beamline(BL12SW)is a phase-II beamline project at the Shanghai Syn-chrotron Radiation Facility.The primary X-ray techniques used at the beamline are high-energy X-ray diffraction and imaging using white and monochromatic light.The main scientific objectives of ultrahard X-ray beamlines are focused on two research areas.One is the study of the structural properties of Earth’s interior and new materials under extreme high-temperature and high-pressure conditions,and the other is the characterization of materials and processes in near-real service environments.The beamline utilizes a superconducting wiggler as the light source,with two diamond windows and SiC discs to filter out low-energy light(primarily below 30 keV)and a Cu filter assembly to control the thermal load entering the subsequent optical components.The beamline is equipped with dual monochromators.The first was a meridional bending Laue monochromator cooled by liquid nitrogen,achieving a full-energy coverage of 30-162 keV.The second was a sagittal bending Laue monochromator installed in an external building,providing a focused beam in the horizontal direction with an energy range of 60-120 keV.There were four experimental hutches:two large-volume press experimental hutches(LVP1 and LVP2)and two engineering material experimental hutches(ENG1 and ENG2).Each hutch was equipped with various near-real service conditions to satisfy different requirements.For example,LVP1 and LVP2 were equipped with a 200-ton DDIA press and a 2000-ton dual-mode(DDIA and Kawai)press,respectively.ENG1 and ENG2 provide in situ tensile,creep,and fatigue tests as well as high-temperature conditions.Since June 2023,the BL12SW has been in trial operation.It is expected to officially open to users by early 2024.展开更多
Direct Laser Sintering (DSL), a technology enabling the production of dense metal components directly from 3D CAD data, was used for the first time to produce a Metal Matrix Composite (MMCp) based on Al-Si-Cu alloy in...Direct Laser Sintering (DSL), a technology enabling the production of dense metal components directly from 3D CAD data, was used for the first time to produce a Metal Matrix Composite (MMCp) based on Al-Si-Cu alloy in view of its application in different fields, in particular for aeronautics. The porosity of the material obtained so was investigated by using optical and electron microscopy and, in particular, X-ray computed microtomography techniques. DSL is a unique technique to produce complex components in an economical way while computed microtomography is a unique technique to evaluate the porosity and pore and cracks distribution in a not destructive way. A near homogeneous distribution of the porosity and pore sizes was observed both comparing different regions of the same specimen and also by comparing different samples obtained by using the same DLS production method. A quantitative analysis of the damage in the composite is also reported.展开更多
Synchrotron polychromatic X-ray microdiffraction(micro-XRD) was applied to study in situ deformation twinning of commercially AZ31(Mg-3Al-1Zn) strip subjected to uniaxial tension.The morphology and growth of twins...Synchrotron polychromatic X-ray microdiffraction(micro-XRD) was applied to study in situ deformation twinning of commercially AZ31(Mg-3Al-1Zn) strip subjected to uniaxial tension.The morphology and growth of twins were analyzed in situ under the load level from 64 to 73 MPa.The X-ray microdiffraction data,collected on beamline 12.3.2 at the Advanced Light Source,were then used to map an area of 396μm x 200μm within the region of interest.The experimental set-up and X-ray diffraction microscopy with a depth resolution allow the position and orientation of each illuminated grain to be determined at the submicron size.A list of parent grains sorted by crystallographic orientation were selected to examine their twinning behavior.The results depict twin variant selection,local misorientation fluctuation and mosaic spread for multi-twins within the same parent grain.As load increases,the amplitude of misorientation fluctuation along twin trace keeps increasing.This is attributable to the accumulation of geometrically necessary dislocations.展开更多
The increased use of rechargeable batteries in portable electronic devices and the continuous develop-ment of novel applications (e.g. transportation and large scale energy storage), have raised a strong de-mand for...The increased use of rechargeable batteries in portable electronic devices and the continuous develop-ment of novel applications (e.g. transportation and large scale energy storage), have raised a strong de-mand for high performance batteries with increased energy density, cycle and calendar life, safety andlower costs. This triggers significant efforts to reveal the fundamental mechanism determining batteryperformance with the use of advanced analytical techniques. However, the inherently complex character-istics of battery systems make the mechanism analysis sophisticated and difficult. Synchrotron radiationis an advanced collimated light source with high intensity and tunable energies. It has particular ad-vantages in electronic structure and geometric structure (both the short-range and long-range structure)analysis of materials on different length and time scales. In the past decades, synchrotron X-ray tech-niques have been widely used to understand the fundamental mechanism and guide the technologicaloptimization of batteries. In particular, in situ and operando techniques with high spatial and temporalresolution, enable the nondestructive, real time dynamic investigation of the electrochemical reaction,and lead to significant deep insights into the battery operation mechanism. This review gives a brief introduction of the application of synchrotron X-ray techniques to the inves-tigation of battery systems. The five widely implicated techniques, including X-ray diffraction (XRD), PairDistribution Function (PDF), Hard and Soft X-ray absorption spectroscopy (XAS) and X-ray photoelectronspectroscopy (XPS) will be reviewed, with the emphasis on their in situ studies of battery systems during cycling.展开更多
The aging behavior of Al-Cu-Mg-Ag alloys with high Cu/Mg was studied by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) using synchrotron radiation. TEM study reveals that the major stre...The aging behavior of Al-Cu-Mg-Ag alloys with high Cu/Mg was studied by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) using synchrotron radiation. TEM study reveals that the major strengthening phases of the alloy after aging at 160?C for 10 h are Ω and less θ′. SAXS study shows that the scattering patterns are composed of several concentric circles at the beginning of aging process, which is replaced by the butterfly-wings scattering patterns with the increase of aging time. The butterfly-wings scattering patterns are composed of several branches. The angles between the branches are roughly equal to that between the habit planes of precipitates. The evolution of Guinier radius with aging time indicates the good coarsening resistance of the precipitates. The evolution of integrated intensity is consistent with the classical two-step precipitation process.展开更多
According to intensity distribution of the synchrotron radiation source focused by a toroidal mirror at the Beijing synchrotron radiation biological macromolecule station, theoretical modeling of the Beijing synchrotr...According to intensity distribution of the synchrotron radiation source focused by a toroidal mirror at the Beijing synchrotron radiation biological macromolecule station, theoretical modeling of the Beijing synchrotron radiation source is developed for capillary optics. Using this theoretical modeling, the influences of the configuration curve of the polycapillary X-ray lens on transmission efficiency and working distance are analyzed. The experimental results of the transmission efficiency and working distance at the biological macromolecule station are in good agreement with the theoretical results.展开更多
基金supported by the fund of State Key Laboratory of Genetic Resources and Evolution(GREKF13-06)
文摘Sinocyclocheilus is a cave-dwelling cyprinid genus endemic to southwest China. Several species possess a conspicuous horn on their head, which has been suggested as a constructive troglomorphic trait but lacks substantial evidence. We used non- invasive, high spatial resolution synchrotron X-ray microtomography to investigate the three-dimensional (3D) morphology of the horn of Sinocyclocheilus hyalinus, one of eight such troglobiotic species. 3D renderings demonstrated the osteological components, which were comprised of a rear wall comprised of the supraoccipital bone, a remaining frontal wall with numerous fenestrae, and the bottom continuous with the parietal and epiotic. A horn cavity occurred within the horn. The fenestrae in the frontal wall were continuous in the horn cavity and showed elaborate channeling, and were, connected to the cranial cavity by soft tissue. We tentatively called this configuration the "otocornual connection" due to its anatomic and putative functional similarity to the otolateralic connection in clupeids and loricariids, which provide an indirect pathway to enhance perception of underwater sound signals. This study provides a functional morphology context for further histological and physiological investigations of such horn structures in Sinocyclocheilus cavefish, and we suggest that the horn might enhance acoustic perception to compensate for visual loss in subterranean life, which warrants future physiological examination as lab-reared S. hyalinus become available.
基金This work was partially supported by the fund of State Key Laboratory of Genetic Resources and Evolution(GREKF13-06)。
文摘Sinocyclocheilus is a cave-dwelling cyprinid genus endemic to southwest China.Several species possess a conspicuous horn on their head,which has been suggested as a constructive troglomorphic trait but lacks substantial evidence.We used non-invasive,high spatial resolution synchrotron X-ray microtomography to investigate the three-dimensional(3D)morphology of the horn of Sinocyclocheilus hyalinus,one of eight such troglobiotic species.3D renderings demonstrated the osteological components,which were comprised of a rear wall comprised of the supraoccipital bone,a remaining frontal wall with numerous fenestrae,and the bottom continuous with the parietal and epiotic.A horn cavity occurred within the horn.The fenestrae in the frontal wall were continuous in the horn cavity and showed elaborate channeling,and were,connected to the cranial cavity by soft tissue.We tentatively called this configuration the“otocornual connection”due to its anatomic and putative functional similarity to the otolateralic connection in clupeids and loricariids,which provide an indirect pathway to enhance perception of underwater sound signals.This study provides a functional morphology context for further histological and physiological investigations of such horn structures in Sinocyclocheilus cavefish,and we suggest that the horn might enhance acoustic perception to compensate for visual loss in subterranean life,which warrants future physiological examination as lab-reared S.hyalinus become available.
基金supported by the National Natural Science Foundation of China(Nos.52171098 and 51921001)the State Key Laboratory for Advanced Metals and Materials(No.2022Z-02)+1 种基金the National High-level Personnel of Special Support Program(No.ZYZZ2021001)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-20-03C2 and FRF-BD-20-02B).
文摘High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Extensive studies on the deformation mech-anisms of HEAs can guide microstructure control and toughness design,which is vital for understanding and studying state-of-the-art structural materials.Synchrotron X-ray and neutron diffraction are necessary techniques for materials science research,especially for in situ coupling of physical/chemical fields and for resolving macro/microcrystallographic information on materials.Recently,several re-searchers have applied synchrotron X-ray and neutron diffraction methods to study the deformation mechanisms,phase transformations,stress behaviors,and in situ processes of HEAs,such as variable-temperature,high-pressure,and hydrogenation processes.In this review,the principles and development of synchrotron X-ray and neutron diffraction are presented,and their applications in the deformation mechanisms of HEAs are discussed.The factors that influence the deformation mechanisms of HEAs are also outlined.This review fo-cuses on the microstructures and micromechanical behaviors during tension/compression or creep/fatigue deformation and the application of synchrotron X-ray and neutron diffraction methods to the characterization of dislocations,stacking faults,twins,phases,and intergrain/interphase stress changes.Perspectives on future developments of synchrotron X-ray and neutron diffraction and on research directions on the deformation mechanisms of novel metals are discussed.
基金financial support through a KekuléPh.D.fellowship by the Fonds der Chemischen Industrie(FCI)support from the China Scholarship Council(No.202106950013)。
文摘The parasitic hydrogen evolution reaction(HER)in the negative half-cell of vanadium redox flow batteries(VRFBs)causes severe efficiency losses.Thus,a deeper understanding of this process and the accompanying bubble formation is crucial.This benchmarking study locally analyzes the bubble distribution in thick,porous electrodes for the first time using deep learning-based image segmentation of synchrotron X-ray micro-tomograms.Each large three-dimensional data set was processed precisely in less than one minute while minimizing human errors and pointing out areas of increased HER activity in VRFBs.The study systematically varies the electrode potential and material,concluding that more negative electrode potentials of-200 m V vs.reversible hydrogen electrode(RHE)and lower cause more substantial bubble formation,resulting in bubble fractions of around 15%–20%in carbon felt electrodes.Contrarily,the bubble fractions stay only around 2%in an electrode combining carbon felt and carbon paper.The detected areas with high HER activity,such as the border subregion with more than 30%bubble fraction in carbon felt electrodes,the cutting edges,and preferential spots in the electrode bulk,are potential-independent and suggest that larger electrodes with a higher bulk-to-border ratio might reduce HER-related performance losses.The described combination of electrochemical measurements,local X-ray microtomography,AI-based segmentation,and 3D morphometric analysis is a powerful and novel approach for local bubble analysis in three-dimensional porous electrodes,providing an essential toolkit for a broad community working on bubble-generating electrochemical systems.
基金financialy supported by National Key R&D Program of China(2022YFB2402600)the National Natural Science Foundation of China(22279166)+1 种基金the Research Start-up Funds from Sun Yat-Sen University(200306)the Fundamental Research Funds for the Central Universities,Sun Yat-Sen University(22qntd0101 and 22dfx01)
文摘Pseudocapacitive materials that store charges via reversible surface or near-surface faradaic reactions are capable of overcoming the capacity limitations of electrical double-layer capacitors.Revealing the structure–activity relationship between the microstructural features of pseudocapacitive materials and their electrochemical performance on the atomic scale is the key to build high-performance capacitor-type devices containing ideal pseudocapacitance effect.Currently,the high brightness(flux),and spectral and coherent nature of synchrotron X-ray analytical techniques make it a powerful tool for probing the structure–property relationship of pseudocapacitive materials.Herein,we report a comprehensive and systematic review of four typical characterization techniques(synchrotron X-ray diffraction,pair distribution function[PDF]analysis,soft X-ray absorption spectroscopy,and hard X-ray absorption spectroscopy)for the study of pseudocapacitance mechanisms.In addition,we offered significant insights for understanding and identifying pseudocapacitance mechanisms(surface redox pseudocapacitance,intercalation pseudocapacitance,and the extrinsic pseudocapacitance phenomenon in battery materials)by combining in situ hard XAS and electrochemical analyses.Finally,a perspective for further depth of understanding into the pseudocapacitance mechanism using synchrotron X-ray analytical techniques is proposed.
基金supported by National Natural Science Foundation of China(U2032118 and 42172048)Guizhou Provincial Science and Technology Projects(QKHPTRCYQK[2023]035 and QKHJC-ZK[2021]ZD042)+1 种基金Hundred Talents Program of the Chinese Academy of SciencesGuizhou Provincial 2020 and 2021 Science and Technology Subsidies(Nos.GZ2020SIG and GZ2021SIG)。
文摘The unit-cell parameters and volumes of geikielite(MgTiO_(3))and ilmenite(FeTiO_(3))were investigated at high temperatures up to 700 K and ambient pressure,using in-situ angle-dispersive synchrotron X-ray diffraction.No phase transition was detected over the experimental temperature range.Using(Berman in J Petrol29:445-522,1988.10.1093/petrology/29.2.445)equations to fit the temperature-volume data,the volumetric thermal expansion coefficients at ambient conditions(α_(V0))of MgTiO_(3) and FeTiO_(3) were obtained as follows:2.55(6)×10^(-5)K^(-1)and 2.82(10)×10^(-5)K^(-1),respectively.We infer that the larger effective ionic radius of Fe^(2+)(Ⅵ)(0.78 A)than that of Mg^(2+)(Ⅵ)(0.72?)renders FeTiO_(3)has a larger volumetric thermal expansivity than MgTiO_(3).Simultaneously,the refined axial thermal expansion coefficients under ambient conditions areα_(a0)=0.74(3)×10^(-5)K^(-1)andα_(c0)=1.08(5)×10^(-5)K^(-1)for the aaxis and c-axis of MgTiO_(3),respectively,andα_(a0)=0.95(5)×10^(-5)K^(-1)andα_(c0)=0.92(12)×10^(-5)K^(-1)for the aaxis and c-axis of FeTiO_(3),respectively.The axial thermal expansivity of MgTiO_(3) is anisotropic,but that of FeTiO_(3) is nearly isotropic.We infer that the main reason for the different axial thermal expansivity between MgTiO_(3) and FeTiO_(3) is that the thermal expansion mode of the Mg-O bond in MgTiO_(3) is different from that of the Fe-O bonds in FeTiO_(3).
基金supported by the Jordan University of Science and Technology(Grant No.20180167)the SESAME Synchrotron Center Jordan(Grant No.20185004)。
文摘The relative intensities of L-subshell x-ray fluorescence(XRF)for elements with atomic numbers 62≤Z≤83 were measured at two excitation energies,18 keV and 23 keV,using a synchrotron radiation source at a beamline of the Synchrotron Light Center for Experimental Science and Applications in the Middle East(SESAME),Jordan.The experimentally measured results of the relative intensities were compared with the calculated results using the subshell fluorescence yield and the Coster-Kronig transition probabilities recommended by Campbell and the values based on the Dirac-Hartree-Slater model by Puri.The experimental and theoretical results are in agreement.In this work,L XRF relative intensities for the elements Sm,Gd,Tb,Er,Ta,W,Re,Hg,Pb and Bi at energies of 18 keV and 23 keV were measured.
基金the financial support from China Scholarship Council(202108080263)Financial support by the Federal Ministry of Education and Research(BMBF)under the project“He Na”(03XP0390C)+1 种基金the German Research Foundation(DFG)under the joint German-Russian DFG project“KIBSS”(448719339)are acknowledgedthe financial support from the Federal Ministry of Education and Research(BMBF)under the project“Ka Si Li”(03XP0254D)in the competence cluster“Excell Batt Mat”。
文摘Transition metal sulfides have been regarded as promising anode materials for sodium-ion batteries(SIB).However,they face the challenges of poor electronic conductivity and large volume change,which result in capacity fade and low rate capability.In this work,a composite containing ultrasmall CoS(~7 nm)nanoparticles embedded in heteroatom(N,S,and O)-doped carbon was synthesized by an efficient one-step sulfidation process using a Co(Salen)precursor.The ultrasmall CoS nanoparticles are beneficial for mechanical stability and shortening Na-ions diffusion pathways.Furthermore,the N,S,and O-doped defect-rich carbon provides a robust and highly conductive framework enriched with active sites for sodium storage as well as mitigates volume expansion and polysulfide shuttle.As anode for SIB,CoS@HDC exhibits a high initial capacity of 906 mA h g^(-1)at 100 mA g^(-1)and a stable long-term cycling life with over 1000 cycles at 500 mA g^(-1),showing a reversible capacity of 330 mA h g^(-1).Meanwhile,the CoS@HDC anode is proven to maintain its structural integrity and compositional reversibility during cycling.Furthermore,Na-ion full batteries based on the CoS@HDC anode and Na_(3)V_(2)(PO_(4))_(3)cathode demonstrate a stable cycling behavior with a reversible specific capacity of~200 m A h g^(-1)at least for 100 cycles.Moreover,advanced synchrotron operando X-ray diffraction,ex-situ X-ray absorption spectroscopy,and comprehensive electrochemical tests reveal the structural transformation and the Co coordination chemistry evolution of the CoS@HDC during cycling,providing fundamental insights into the sodium storage mechanism.
基金This work was supported by the National Key R&D Program of China(No.2020YFA0405802)the Shanghai Large Scientific Facilities Center.
文摘The construction of a new beamline,BL10U1,was completed at the Shanghai synchrotron radiation facility in 2020.This multipurpose beamline was designed to provide X-ray scattering techniques such as ultra-small-angle X-ray scattering(USAXS),small-angle X-ray scattering(SAXS),wide-angle X-ray scattering,and microfocus SAXS(μSAXS)for a broad user community.To realize fast time-resolved USAXS experiments,the beamline adopted an in-vacuum undulator with a total length of 1.6 m as the photon source.An in-house cryogenic-cooled double multilayer monochromator was installed to deliver a photon flux of approximately 10^(13) photons/s at a photon energy of 10 keV.The three-year successful operation of this beamline demonstrated that the monochromator operated smoothly,as expected.BL10U1 has three end stations in succession:USAXS end station,μSAXS end station,and end station for industrial applications.The minimum scattering vector q~0.0042 nm^(-1) at 10 keV can be achieved at the USAXS end station equipped with a 28 m-long and 1.8 m-diameter vacuum flight tube.At theμSAXS end station,a beam spot of less than 10×8μm was achieved for micro-SAXS experiments.In contrast,in situ experimental instruments up to 5 m high and 8 m wide can be mounted at the industrial application end station,which offers industrial scientists the opportunity to use their large industrial equipment.BL10U1 opens up a new capability to investigate phenomena such as non-equilibrium and dynamic processes of materials with a wide length scale from angstroms to micrometers with millisecond time resolution.In this paper,we also report beamline design considerations and commissioning results.
基金supported by the Shanghai Municipal Science and Technology Major Project(No.2017SHZDZX02)the National Natural Science Foundation of China(No.12205360)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2018297)。
文摘We report on using synthetic silicon for a high-precision X-ray polarimeter comprising a polarizer and an analyzer,each based on a monolithic channel-cut crystal used at multiple Brewster reflections with a Bragg angle very close to 45°.Experiments were performed at the BL09B bending magnet beamline of the Shanghai Synchrotron Radiation Facility using a Si(800)crystal at an X-ray energy of 12.914 keV.A polarization purity of 8.4×10^(-9)was measured.This result is encouraging,as the measured polarization purity is the best-reported value for the bending magnet source.Notably,this is the firstly systematic study on the hard X-ray polarimeter in China,which is crucial for exploring new physics,such as verifying vacuum birefringence.
基金National Key Research and Development Program(No.2021YFA1601000)National Natural Science Foundation of China(No.12175294)Natural Science Foundation of Shanghai,China(No.21ZR1471500).
文摘The hard X-ray nanoprobe beamline BL13U is a phase-Ⅱ beamline project at the Shanghai Synchrotron Radiation Facility.The beamline aims to enable comprehensive experiments at high spatial resolutions ranging from 50 to 10 nm. The X-ray energy range of the beamline, 5–25 keV, can detect most elements in the periodic table. Two operating modes were designed to accommodate the experimental requirements of high-energy resolution or high photon flux, respectively. X-ray nanofluorescence, nanodiffraction, and coherent diffraction imaging are developed as the main experimental techniques for BL13U. This paper describes the beamline optics, end station configurations, experimental methods under development, and preliminary test results. This comprehensive overview aims to provide a clear understanding of the beamline capabilities and potential applications.
基金National Natural Science Foundation of China(No.12205360)Shanghai Pilot Program for Basic Research-Chinese Academy of Science,Shanghai Branch(No.JCYJ-SHFY-2021-010).
文摘This study presents a new method for characterizing the thermal lattice deformation of a monochromator with high precision under service conditions and first reports the operando measurements of nanoscale thermal lattice deformation on a double-crystal monochromator at different incident powers.The nanoscale thermal lattice deformation of the monochromator first crystal was obtained by analyzing the intensity of the distorted DuMond diagrams.DuMond diagrams of the 333 diffraction index,sensitive to lattice deformation,were obtained directly using a 2D detector and an analyzer crystal orthogonal to the monochromator.With increasing incident power and power density,the maximum height of the lattice deformation increased from 3.2 to 18.5 nm,and the deformation coefficient of the maximum height increased from 1.1 to 3.2 nm/W.The maximum relative standard deviation was 4.2%,and the maximum standard deviation was 0.1 nm.Based on the measured thermal deformations,the flux saturation phenomenon and critical point for the linear operation of the monochromator were predicted with increasing incident power.This study provides a simple solution to the problem of the lower precision of synchrotron radiation monochromator characterizations compared to simulations.
基金This work was supported by Youth Innovation Promotion Association CAS,National Natural Science Foundation of China(Grant No.11705263)Shanghai Rising-Star Program(Grant No.21QA1410900)。
文摘Semiconductor materials exemplify humanity's unwavering pursuit of enhanced performance,efficiency,and functionality in electronic devices.From its early iterations to the advanced variants of today,this field has undergone an extraordinary evolution.As the reliability requirements of integrated circuits continue to increase,the industry is placing greater emphasis on the crystal qualities.Consequently,conducting a range of characterization tests on the crystals has become necessary.This paper will examine the correlation between crystal quality,device performance,and production yield,emphasizing the significance of crystal characterization tests and the important role of high-precision synchrotron radiation X-ray topography characterization in semiconductor analysis.Finally,we will cover the specific applications of synchrotron radiation characterization in the development of semiconductor materials.
文摘The layout and characteristics of the hard X-ray spectroscopy beamline(BL11B)at the Shanghai synchrotron radiation facility are described herein.BL11B is a bending-magnet beamline dedicated to conventional and millisecond-scale quick-scanning X-ray absorption fine structures.It is equipped with a cylindrical collimating mirror,a double-crystal monochromator comprising Si(111)and Si(311),a channel-cut quick-scanning Si(111)monochromator,a toroidal focusing mirror,and a high harmonics rejection mirror.It can provide 5-30 keV of X-rays with a photon flux of~5×10^(11)photons/s and an energy resolution of~1.31×10^(-4)at 10 keV.The performance of the beamline can satisfy the demands of users in the fields of catalysis,materials,and environmental science.This paper presents an overview of the beamline design and a detailed description of its performance and capabilities.
基金National Natural Science Foundation of China(Nos.12334010,42274121).
文摘The ultrahard X-ray multifunctional application beamline(BL12SW)is a phase-II beamline project at the Shanghai Syn-chrotron Radiation Facility.The primary X-ray techniques used at the beamline are high-energy X-ray diffraction and imaging using white and monochromatic light.The main scientific objectives of ultrahard X-ray beamlines are focused on two research areas.One is the study of the structural properties of Earth’s interior and new materials under extreme high-temperature and high-pressure conditions,and the other is the characterization of materials and processes in near-real service environments.The beamline utilizes a superconducting wiggler as the light source,with two diamond windows and SiC discs to filter out low-energy light(primarily below 30 keV)and a Cu filter assembly to control the thermal load entering the subsequent optical components.The beamline is equipped with dual monochromators.The first was a meridional bending Laue monochromator cooled by liquid nitrogen,achieving a full-energy coverage of 30-162 keV.The second was a sagittal bending Laue monochromator installed in an external building,providing a focused beam in the horizontal direction with an energy range of 60-120 keV.There were four experimental hutches:two large-volume press experimental hutches(LVP1 and LVP2)and two engineering material experimental hutches(ENG1 and ENG2).Each hutch was equipped with various near-real service conditions to satisfy different requirements.For example,LVP1 and LVP2 were equipped with a 200-ton DDIA press and a 2000-ton dual-mode(DDIA and Kawai)press,respectively.ENG1 and ENG2 provide in situ tensile,creep,and fatigue tests as well as high-temperature conditions.Since June 2023,the BL12SW has been in trial operation.It is expected to officially open to users by early 2024.
文摘Direct Laser Sintering (DSL), a technology enabling the production of dense metal components directly from 3D CAD data, was used for the first time to produce a Metal Matrix Composite (MMCp) based on Al-Si-Cu alloy in view of its application in different fields, in particular for aeronautics. The porosity of the material obtained so was investigated by using optical and electron microscopy and, in particular, X-ray computed microtomography techniques. DSL is a unique technique to produce complex components in an economical way while computed microtomography is a unique technique to evaluate the porosity and pore and cracks distribution in a not destructive way. A near homogeneous distribution of the porosity and pore sizes was observed both comparing different regions of the same specimen and also by comparing different samples obtained by using the same DLS production method. A quantitative analysis of the damage in the composite is also reported.
基金Project(DP140102355)supported by the Australian Research Council(ARC)Project supported by the China Scholarship Council(CSC)
文摘Synchrotron polychromatic X-ray microdiffraction(micro-XRD) was applied to study in situ deformation twinning of commercially AZ31(Mg-3Al-1Zn) strip subjected to uniaxial tension.The morphology and growth of twins were analyzed in situ under the load level from 64 to 73 MPa.The X-ray microdiffraction data,collected on beamline 12.3.2 at the Advanced Light Source,were then used to map an area of 396μm x 200μm within the region of interest.The experimental set-up and X-ray diffraction microscopy with a depth resolution allow the position and orientation of each illuminated grain to be determined at the submicron size.A list of parent grains sorted by crystallographic orientation were selected to examine their twinning behavior.The results depict twin variant selection,local misorientation fluctuation and mosaic spread for multi-twins within the same parent grain.As load increases,the amplitude of misorientation fluctuation along twin trace keeps increasing.This is attributable to the accumulation of geometrically necessary dislocations.
基金the National Natural Science Foundation of China (Grant nos.21233004,21303147 and 21473148,etc.)the National Key Research and Development Program (Grant no.2016YFB0901500)
文摘The increased use of rechargeable batteries in portable electronic devices and the continuous develop-ment of novel applications (e.g. transportation and large scale energy storage), have raised a strong de-mand for high performance batteries with increased energy density, cycle and calendar life, safety andlower costs. This triggers significant efforts to reveal the fundamental mechanism determining batteryperformance with the use of advanced analytical techniques. However, the inherently complex character-istics of battery systems make the mechanism analysis sophisticated and difficult. Synchrotron radiationis an advanced collimated light source with high intensity and tunable energies. It has particular ad-vantages in electronic structure and geometric structure (both the short-range and long-range structure)analysis of materials on different length and time scales. In the past decades, synchrotron X-ray tech-niques have been widely used to understand the fundamental mechanism and guide the technologicaloptimization of batteries. In particular, in situ and operando techniques with high spatial and temporalresolution, enable the nondestructive, real time dynamic investigation of the electrochemical reaction,and lead to significant deep insights into the battery operation mechanism. This review gives a brief introduction of the application of synchrotron X-ray techniques to the inves-tigation of battery systems. The five widely implicated techniques, including X-ray diffraction (XRD), PairDistribution Function (PDF), Hard and Soft X-ray absorption spectroscopy (XAS) and X-ray photoelectronspectroscopy (XPS) will be reviewed, with the emphasis on their in situ studies of battery systems during cycling.
基金financially supported by the National Natural Science Foundation of China(No.51004018)
文摘The aging behavior of Al-Cu-Mg-Ag alloys with high Cu/Mg was studied by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) using synchrotron radiation. TEM study reveals that the major strengthening phases of the alloy after aging at 160?C for 10 h are Ω and less θ′. SAXS study shows that the scattering patterns are composed of several concentric circles at the beginning of aging process, which is replaced by the butterfly-wings scattering patterns with the increase of aging time. The butterfly-wings scattering patterns are composed of several branches. The angles between the branches are roughly equal to that between the habit planes of precipitates. The evolution of Guinier radius with aging time indicates the good coarsening resistance of the precipitates. The evolution of integrated intensity is consistent with the classical two-step precipitation process.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11179010 and 11075017 )the Natural Science Foundation of Beijing,China (Grant No. 1102019)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100003120010)
文摘According to intensity distribution of the synchrotron radiation source focused by a toroidal mirror at the Beijing synchrotron radiation biological macromolecule station, theoretical modeling of the Beijing synchrotron radiation source is developed for capillary optics. Using this theoretical modeling, the influences of the configuration curve of the polycapillary X-ray lens on transmission efficiency and working distance are analyzed. The experimental results of the transmission efficiency and working distance at the biological macromolecule station are in good agreement with the theoretical results.