Clostridioides difficile(C.difficile)is progressively colonizing humans and animals living with humans.During this process,hypervirulent strains and mutated toxin A and B of C.difficile(TcdA and TcdB)are originating a...Clostridioides difficile(C.difficile)is progressively colonizing humans and animals living with humans.During this process,hypervirulent strains and mutated toxin A and B of C.difficile(TcdA and TcdB)are originating and developing.While in healthy subjects colonization by C.difficile becomes a risk after the use of antibiotics that alter the microbiome,other categories of people are more susceptible to infection and at risk of relapse,such as those with inflammatory bowel disease(IBD).Recent in vitro studies suggest that this increased susceptibility could be due to the strong cytotoxic synergism between TcdB and proinflammatory cytokines the tumor necrosis factor-alpha and interferon-gamma(CKs).Therefore,in subjects with IBD the presence of an inflammatory state in the colon could be the driver that increases the susceptibility to C.difficile infection and its progression and relapses.TcdB is internalized in the cell via three receptors:chondroitin sulphate proteoglycan 4;poliovirus receptor-like 3;and Wnt receptor frizzled family.Chondroitin sulphate proteoglycan 4 and Wnt receptor frizzled family are involved in cell death by apoptosis or necrosis depending on the concentration of TcdB and cell types,while poliovirus receptor-like 3 induces only necrosis.It is possible that cytokines could also induce a greater expression of receptors for TcdB that are more involved in necrosis than in apoptosis.Therefore,in subjects with IBD there are the conditions:(1)For greater susceptibility to C.difficile infection,such as the inflammatory state,and abnormalities of the microbiome and of the immune system;(2)for the enhancement of the cytotoxic activity of TcdB+Cks;and(3)for a greater expression of TcdB receptors stimulated by cytokines that induce cell death by necrosis rather than apoptosis.The only therapeutic approach currently possible in IBD patients is monitoring of C.difficile colonization for interventions aimed at reducing tumor necrosis factor-alpha and interferon-gamma levels when the infection begins.The future perspective is to generate bacteriophages against C.difficile for targeted therapy.展开更多
This study aimed to remediate in-situ leach mining contaminated soil by amendment-plant synergism. The results showed that plant species exhibited ex-tremely significant effects on the concentration of nitrate nitroge...This study aimed to remediate in-situ leach mining contaminated soil by amendment-plant synergism. The results showed that plant species exhibited ex-tremely significant effects on the concentration of nitrate nitrogen; to be specific, the concentration of nitrate nitrogen in soil planted with wheat was reduced from 692.19 mg/kg to lower than 100 mg/kg; when the mass ratio of amendment to soil reached 3:50 and the amendment particle size was 1-2 mm, the concentration of nitrate ni-trogen in soil planted with wheat was reduced to 43 mg/kg. The amendment type exhibited extremely significant effects on the concentration of ammonium nitrogen; to be specific, when the mass ratio of amendment to soil reached 10:50, the concen-tration of ammonium nitrogen in soil added with 2-3 mm zeolite was reduced from 23 593.75 to 3 300 mg/kg on day 15. Amendments and plants mainly exhibited desorption performance for sulfate radical in soil, and the amendment type extreme-ly significantly affected the concentration of sulfate radical; to be specific, the con-centration of sulfate radical in soil added with limestone increased from 370 mg/kg to 900 mg/kg on day 7.展开更多
Background:Despite the availability of chemotherapy drugs such as 5-fluorouracil(5-FU),the treatment of some cancers such as gastric cancer remains challenging due to drug resistance and side effects.This study aimed t...Background:Despite the availability of chemotherapy drugs such as 5-fluorouracil(5-FU),the treatment of some cancers such as gastric cancer remains challenging due to drug resistance and side effects.This study aimed to investigate the effect of celastrol in combination with the chemotherapy drug 5-FU on proliferation and induction of apoptosis in human gastric cancer cell lines(AGS and EPG85-257).Materials and Methods:In this in vitro study,AGS and EPG85-257 cells were treated with different concentrations of celastrol,5-FU,and their combination.Cell proliferation was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide(MTT)assay.The synergistic effect of 5-FU and celastrol was studied using Compusyn software.The DNA content at different phases of the cell cycle and apoptosis rate was measured usingflow cytometry.Results:Co-treatment with low concentrations(10%inhibitory concentration(IC10))of celastrol and 5-FU significantly reduced IC50(p<0.05)so that 48 h after treatment,IC50 was calculated at 3.77 and 6.9μM for celastrol,20.7 and 11.6μM for 5-FU,and 5.03 and 4.57μM for their combination for AGS and EPG85-257 cells,respectively.The mean percentage of apoptosis for AGS cells treated with celastrol,5-FU,and their combination was obtained 23.9,41.2,and 61.9,and for EPG85-257 cells 5.65,46.9,and 55.7,respectively.In addition,the 5-FU and celastrol-5-FU combination induced cell cycle arrest in the synthesis phase.Conclusions:Although celastrol could decrease the concentration of 5-fluorouracil that sufficed to suppress gastric cancer cells,additional studies are required to arrive at conclusive evidence on the anticancer effects of celastrol.展开更多
This study was conducted to evaluate the effectiveness of enzymes in purifying and reducing the degree of polymerization of cellulose for the production of dissolving pulp.Our goal was to determine the contributions o...This study was conducted to evaluate the effectiveness of enzymes in purifying and reducing the degree of polymerization of cellulose for the production of dissolving pulp.Our goal was to determine the contributions of xylanase(X)and endoglucanase(EG)in the treatment of pulp,specifically by quantifying the formation of soluble and insoluble reducing sugars using the dinitrosalycilic acid(DNS)test.Predominantly,the release of soluble reducing sugars(RSSol)was enhanced after xylanase treatment,while endoglucanase(EG)treatment led to changes in insoluble reducing sugars(RSIns).The maximum synergism was observed for RSIns when a high ratio of endoglucanase to xylanase(320EG:5X/g pulp)was used.The relative contribution of endoglucanase to RSins was determined to be 15.6%of the total reducing sugar.The viscosity of pulps treated with xylanase decreased only by 7%,whereas endoglucanase treatment significantly reduced viscosity by 45%.Modifications in the particle size were observed after pulp treatment with the combination of endoglucanase and xylanase.In summary,the DNS test is a rapid and effective method for evaluating the efficiency of enzyme treatments on pulps.The measurement of RSIns correlates with changes in pulp viscosity to different extents,providing valuable insights into the effectiveness of enzyme treatments.展开更多
In order to develop green good, reduce the use of chemical fertilizer and pesticide, realize "double reduction" and synergism, improve safety and quality of products, protect the ecological environment and promote t...In order to develop green good, reduce the use of chemical fertilizer and pesticide, realize "double reduction" and synergism, improve safety and quality of products, protect the ecological environment and promote the healthy and steady development of strawberry industry, the goals and key technology of fertilizer-pesticide "double reduction" and synergism for greenhouse strawberry are summed up in this paper targeting at the current situation of strawberry production and combined with the new technology achievements at home and abroad. The key technology includes six items: healthy seedling cultivating technique, soil improvement and continuous cropping obstacle treatment technique, agricultural ecological prevention tech- nique, physicochemical trap of pest control technique, biological control technique and low residual risk chemical control technique.展开更多
文摘Clostridioides difficile(C.difficile)is progressively colonizing humans and animals living with humans.During this process,hypervirulent strains and mutated toxin A and B of C.difficile(TcdA and TcdB)are originating and developing.While in healthy subjects colonization by C.difficile becomes a risk after the use of antibiotics that alter the microbiome,other categories of people are more susceptible to infection and at risk of relapse,such as those with inflammatory bowel disease(IBD).Recent in vitro studies suggest that this increased susceptibility could be due to the strong cytotoxic synergism between TcdB and proinflammatory cytokines the tumor necrosis factor-alpha and interferon-gamma(CKs).Therefore,in subjects with IBD the presence of an inflammatory state in the colon could be the driver that increases the susceptibility to C.difficile infection and its progression and relapses.TcdB is internalized in the cell via three receptors:chondroitin sulphate proteoglycan 4;poliovirus receptor-like 3;and Wnt receptor frizzled family.Chondroitin sulphate proteoglycan 4 and Wnt receptor frizzled family are involved in cell death by apoptosis or necrosis depending on the concentration of TcdB and cell types,while poliovirus receptor-like 3 induces only necrosis.It is possible that cytokines could also induce a greater expression of receptors for TcdB that are more involved in necrosis than in apoptosis.Therefore,in subjects with IBD there are the conditions:(1)For greater susceptibility to C.difficile infection,such as the inflammatory state,and abnormalities of the microbiome and of the immune system;(2)for the enhancement of the cytotoxic activity of TcdB+Cks;and(3)for a greater expression of TcdB receptors stimulated by cytokines that induce cell death by necrosis rather than apoptosis.The only therapeutic approach currently possible in IBD patients is monitoring of C.difficile colonization for interventions aimed at reducing tumor necrosis factor-alpha and interferon-gamma levels when the infection begins.The future perspective is to generate bacteriophages against C.difficile for targeted therapy.
基金Supported by National Natural Science Foundation of China(Grant No.21067003,5136-4015)Natural Science Foundation of Jiangxi Province(Grant No.20114BAB203024)National High-Tech Research and Development Program of China(Grant No.2012BAC11B07)~~
文摘This study aimed to remediate in-situ leach mining contaminated soil by amendment-plant synergism. The results showed that plant species exhibited ex-tremely significant effects on the concentration of nitrate nitrogen; to be specific, the concentration of nitrate nitrogen in soil planted with wheat was reduced from 692.19 mg/kg to lower than 100 mg/kg; when the mass ratio of amendment to soil reached 3:50 and the amendment particle size was 1-2 mm, the concentration of nitrate ni-trogen in soil planted with wheat was reduced to 43 mg/kg. The amendment type exhibited extremely significant effects on the concentration of ammonium nitrogen; to be specific, when the mass ratio of amendment to soil reached 10:50, the concen-tration of ammonium nitrogen in soil added with 2-3 mm zeolite was reduced from 23 593.75 to 3 300 mg/kg on day 15. Amendments and plants mainly exhibited desorption performance for sulfate radical in soil, and the amendment type extreme-ly significantly affected the concentration of sulfate radical; to be specific, the con-centration of sulfate radical in soil added with limestone increased from 370 mg/kg to 900 mg/kg on day 7.
基金supported by Shahrekord University of Medical Sciences,Shahrekord,Iran(Ethics Code:IR.SKUMS.REC.1397.119,Grant No.3696 and Ethics Code:IR.SKUMS.REC.1401.197,Grant No.6651).
文摘Background:Despite the availability of chemotherapy drugs such as 5-fluorouracil(5-FU),the treatment of some cancers such as gastric cancer remains challenging due to drug resistance and side effects.This study aimed to investigate the effect of celastrol in combination with the chemotherapy drug 5-FU on proliferation and induction of apoptosis in human gastric cancer cell lines(AGS and EPG85-257).Materials and Methods:In this in vitro study,AGS and EPG85-257 cells were treated with different concentrations of celastrol,5-FU,and their combination.Cell proliferation was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide(MTT)assay.The synergistic effect of 5-FU and celastrol was studied using Compusyn software.The DNA content at different phases of the cell cycle and apoptosis rate was measured usingflow cytometry.Results:Co-treatment with low concentrations(10%inhibitory concentration(IC10))of celastrol and 5-FU significantly reduced IC50(p<0.05)so that 48 h after treatment,IC50 was calculated at 3.77 and 6.9μM for celastrol,20.7 and 11.6μM for 5-FU,and 5.03 and 4.57μM for their combination for AGS and EPG85-257 cells,respectively.The mean percentage of apoptosis for AGS cells treated with celastrol,5-FU,and their combination was obtained 23.9,41.2,and 61.9,and for EPG85-257 cells 5.65,46.9,and 55.7,respectively.In addition,the 5-FU and celastrol-5-FU combination induced cell cycle arrest in the synthesis phase.Conclusions:Although celastrol could decrease the concentration of 5-fluorouracil that sufficed to suppress gastric cancer cells,additional studies are required to arrive at conclusive evidence on the anticancer effects of celastrol.
基金supported by CNPq(303416/2018-1)and FAPESP(2019/25867-3).
文摘This study was conducted to evaluate the effectiveness of enzymes in purifying and reducing the degree of polymerization of cellulose for the production of dissolving pulp.Our goal was to determine the contributions of xylanase(X)and endoglucanase(EG)in the treatment of pulp,specifically by quantifying the formation of soluble and insoluble reducing sugars using the dinitrosalycilic acid(DNS)test.Predominantly,the release of soluble reducing sugars(RSSol)was enhanced after xylanase treatment,while endoglucanase(EG)treatment led to changes in insoluble reducing sugars(RSIns).The maximum synergism was observed for RSIns when a high ratio of endoglucanase to xylanase(320EG:5X/g pulp)was used.The relative contribution of endoglucanase to RSins was determined to be 15.6%of the total reducing sugar.The viscosity of pulps treated with xylanase decreased only by 7%,whereas endoglucanase treatment significantly reduced viscosity by 45%.Modifications in the particle size were observed after pulp treatment with the combination of endoglucanase and xylanase.In summary,the DNS test is a rapid and effective method for evaluating the efficiency of enzyme treatments on pulps.The measurement of RSIns correlates with changes in pulp viscosity to different extents,providing valuable insights into the effectiveness of enzyme treatments.
基金Supported by Demonstration and Promotion Project of Shanghai Municipal Committee of Agriculture[HNKT(2015)2-7]Jiangsu Agricultural"Three New Engineering"Project[SXGC(2017)208]Jiangsu Agricultural Science and Technology Innovation Fund[CX(15)1029]~~
文摘In order to develop green good, reduce the use of chemical fertilizer and pesticide, realize "double reduction" and synergism, improve safety and quality of products, protect the ecological environment and promote the healthy and steady development of strawberry industry, the goals and key technology of fertilizer-pesticide "double reduction" and synergism for greenhouse strawberry are summed up in this paper targeting at the current situation of strawberry production and combined with the new technology achievements at home and abroad. The key technology includes six items: healthy seedling cultivating technique, soil improvement and continuous cropping obstacle treatment technique, agricultural ecological prevention tech- nique, physicochemical trap of pest control technique, biological control technique and low residual risk chemical control technique.