Three-dimensional (3-D)self-assembly of nanos- tructures and nanodevices on a large scale remains a grand quest for mankind.Freestanding nanostructured assemblies with controlled 3-D shapes can exhibit attractive prop...Three-dimensional (3-D)self-assembly of nanos- tructures and nanodevices on a large scale remains a grand quest for mankind.Freestanding nanostructured assemblies with controlled 3-D shapes can exhibit attractive properties for sensor and other applications. Protocols for 3-D self-assembly that can be scaled up for mass production on a large up to tonnage)scale, while preserving morphological features on a small (down to nanometer)scale,are needed to allow for widespread use of 3-D nanostructures in advanced devices.However,these often conflicting requirements of scalability and precision pose a difficult challenge for synthetic (man-made)processing routes.展开更多
Injectable thermal gels are a useful tool for drug delivery and tissue engineering.However,most thermal gels do not solidify rapidly at body temperature(37C).We addressed this by synthesizing a thermo-sensitive,rapid...Injectable thermal gels are a useful tool for drug delivery and tissue engineering.However,most thermal gels do not solidify rapidly at body temperature(37C).We addressed this by synthesizing a thermo-sensitive,rapidly biodegrading hydrogel.Our hydrogel,poly(ethylene glycol)-co-poly(propanol serinate hexamethylene urethane)(EPSHU),is an ABA block copolymer comprising A,methoxy poly ethylene glycol group and B,poly(propanol L-serinate hexamethylene urethane).EPSHU was characterized by gel permeation chromatography for molecular weight and 1H NMR and Fourier transformed infrared for structure.Rheological studies measured the phase transition temperature.In vitro degradation in cholesterol esterase and in Dulbecco’s phosphate buffered saline(DPBS)was tracked using the average molecular weight measured by gel permeation chromatography.LIVE/DEAD and resazurin reduction assays performed on NIH 3T3 fibroblasts exposed to EPSHU extracts demonstrated no cytotoxicity.Subcutaneous implantation into BALB/cJ mice indicated good biocompatibility in vivo.The biodegradability and biocompatibility of EPSHU together make it a promising candidate for drug delivery applications that demand carrier gel degradation withinmonths.展开更多
Forsterite particles doped with europium ions(Eu^(3+)) were synthesized via a solution combustion method. The effect of co-dopants on photoluminescence intensity was described. Different percentages of calcium(...Forsterite particles doped with europium ions(Eu^(3+)) were synthesized via a solution combustion method. The effect of co-dopants on photoluminescence intensity was described. Different percentages of calcium(Ca^(2+)), zinc(Zn^(2+)), barium(Ba^(2+)) and strontium(Sr^(2+)) were added to the Mg2SiO4:Eu^(3+)host.The synthesized sample was characterized by X-ray diffraction, transmission electron microscopy,scanning electron microscopy, spectrofluorometer and the FTIR spectroscopy. X-ray diffraction(XRD)results revealed that dominant phase was forsterite in all samples. Additionally, a negligible amount of periclase phase was recognized in the samples. The average size of the synthesized particles was less than 200 nm. The presence of co-dopant led to an enhancement in the photoluminescent property of the synthesized samples. The maximum increase in photoluminescence intensity was obtained by Ba^(2+)ions as a co-dopant. Condensed films of photoluminescence particles were produced by utilizing electrophoresis technique to deposit particles. The results showed that polyvinyl pyrrolidone was the best surface modifier to raise the mass deposition of the samples on the substrate.展开更多
The seek of bioactive materials for promoting bone regeneration is a challenging and longterm task.Functionalization with inorganic metal ions or drug molecules is considered effective strategies to improve the bioact...The seek of bioactive materials for promoting bone regeneration is a challenging and longterm task.Functionalization with inorganic metal ions or drug molecules is considered effective strategies to improve the bioactivity of various existing biomaterials.Herein,amorphous calcium magnesium phosphate(ACMP)nanoparticles and simvastatin(SIM)-loaded ACMP(ACMP/SIM)nanocomposites were developed via a simple co-precipitation strategy.The physiochemical property of ACMP/SIM was explored using transmission electron microscope(TEM),Fourier transform infrared spectroscopy(FTIR),powder X-ray diffraction(XRD)and highperformance liquid chromatograph(HPLC),and the role of Mg^(2+) in the formation of ACMP/SIM was revealed using X-ray absorption near-edge structure(XANES).After that,the transformation process of ACMP/SIM in simulated body fluid(SBF)was also tracked to simulate and explore the in vivo mineralization performance of materials.We find that ACMP/SIM releases ions of Ca^(2+),Mg^(2+)and PO_(4)^(3),when it is immersed in SBF at 37℃,and a phase transformation occurred during which the initially amorphous ACMP turns into self-assembled hydroxyapatite(HAP).Furthermore,ACMP/SIM displays high cytocompatibility and promotes the proliferation and osteogenic differentiation of MC3T3-E1 cells.For the in vivo studies,lamellar ACMP/SIM/Collagen scaffolds with aligned pore structures were prepared and used to repair a rat defect model in calvaria.ACMP/SIM/Collagen scaffolds show a positive effect in promoting the regeneration of calvaria defect after 12weeks.The bioactive ACMP/SIM nanocomposites are promising as bone repair materials.Considering the facile preparation process and superior in vitro/vivo bioactivity,the as-prepared ACMP/SIM would be a potential candidate for bone related biomedical applications.展开更多
Ternary chalcogenide compounds are such promising and have been used for much practical applications.As a sort of these compounds,cubanite(CuFe2S3)possess some unique properties which can be used in different fields.I...Ternary chalcogenide compounds are such promising and have been used for much practical applications.As a sort of these compounds,cubanite(CuFe2S3)possess some unique properties which can be used in different fields.In our study,we developed a facile one pot synthesis of CuFe2S3 nanocrystals(NCs)at a low reaction temperature,and achieved a morphology and phase composition tuning of the NCs through changing a variety of precursors and surfactants,meanwhile improved their magnetism and optical properties.Eventually,well-ordered and‘nano-brick’like CuFe2S3 NCs were obtained and showed best magnetism and near-infrared fluorescence properties.Furthermore,the NCs were proved with good biocompatibility and possibility for cell labeling.This kind of materials with lower toxicity and potential of magnetic is bound to remedy the defects of photoluminescence quantum dots(QDs)and be with higher potential in the field of biological diagnosis and multi-functional system construction.展开更多
文摘Three-dimensional (3-D)self-assembly of nanos- tructures and nanodevices on a large scale remains a grand quest for mankind.Freestanding nanostructured assemblies with controlled 3-D shapes can exhibit attractive properties for sensor and other applications. Protocols for 3-D self-assembly that can be scaled up for mass production on a large up to tonnage)scale, while preserving morphological features on a small (down to nanometer)scale,are needed to allow for widespread use of 3-D nanostructures in advanced devices.However,these often conflicting requirements of scalability and precision pose a difficult challenge for synthetic (man-made)processing routes.
基金This work was supported by the National Institutes of Health and Clinical and Translational Science Institute(NIH UL1TR000005)the National Science Foundation under grant no.1247842.The authors thank Dr Keewon Lee for helpful discussions on cell culture and fluorescence microscopy.
文摘Injectable thermal gels are a useful tool for drug delivery and tissue engineering.However,most thermal gels do not solidify rapidly at body temperature(37C).We addressed this by synthesizing a thermo-sensitive,rapidly biodegrading hydrogel.Our hydrogel,poly(ethylene glycol)-co-poly(propanol serinate hexamethylene urethane)(EPSHU),is an ABA block copolymer comprising A,methoxy poly ethylene glycol group and B,poly(propanol L-serinate hexamethylene urethane).EPSHU was characterized by gel permeation chromatography for molecular weight and 1H NMR and Fourier transformed infrared for structure.Rheological studies measured the phase transition temperature.In vitro degradation in cholesterol esterase and in Dulbecco’s phosphate buffered saline(DPBS)was tracked using the average molecular weight measured by gel permeation chromatography.LIVE/DEAD and resazurin reduction assays performed on NIH 3T3 fibroblasts exposed to EPSHU extracts demonstrated no cytotoxicity.Subcutaneous implantation into BALB/cJ mice indicated good biocompatibility in vivo.The biodegradability and biocompatibility of EPSHU together make it a promising candidate for drug delivery applications that demand carrier gel degradation withinmonths.
文摘Forsterite particles doped with europium ions(Eu^(3+)) were synthesized via a solution combustion method. The effect of co-dopants on photoluminescence intensity was described. Different percentages of calcium(Ca^(2+)), zinc(Zn^(2+)), barium(Ba^(2+)) and strontium(Sr^(2+)) were added to the Mg2SiO4:Eu^(3+)host.The synthesized sample was characterized by X-ray diffraction, transmission electron microscopy,scanning electron microscopy, spectrofluorometer and the FTIR spectroscopy. X-ray diffraction(XRD)results revealed that dominant phase was forsterite in all samples. Additionally, a negligible amount of periclase phase was recognized in the samples. The average size of the synthesized particles was less than 200 nm. The presence of co-dopant led to an enhancement in the photoluminescent property of the synthesized samples. The maximum increase in photoluminescence intensity was obtained by Ba^(2+)ions as a co-dopant. Condensed films of photoluminescence particles were produced by utilizing electrophoresis technique to deposit particles. The results showed that polyvinyl pyrrolidone was the best surface modifier to raise the mass deposition of the samples on the substrate.
基金support from the National Natural Science Foundation of China(31771081)the Science and Technology Commission of Shanghai Municipality(19441901900,19ZR1439700,19JC1414300)and S&T Innovation 2025 Major Special Programme of Ningbo(2018B10040)are gratefully acknowledged+1 种基金sponsored by Shanghai Pujiang Program(2020PJD045)supported by China Postdoctoral Science Foundation(2019M661630).
文摘The seek of bioactive materials for promoting bone regeneration is a challenging and longterm task.Functionalization with inorganic metal ions or drug molecules is considered effective strategies to improve the bioactivity of various existing biomaterials.Herein,amorphous calcium magnesium phosphate(ACMP)nanoparticles and simvastatin(SIM)-loaded ACMP(ACMP/SIM)nanocomposites were developed via a simple co-precipitation strategy.The physiochemical property of ACMP/SIM was explored using transmission electron microscope(TEM),Fourier transform infrared spectroscopy(FTIR),powder X-ray diffraction(XRD)and highperformance liquid chromatograph(HPLC),and the role of Mg^(2+) in the formation of ACMP/SIM was revealed using X-ray absorption near-edge structure(XANES).After that,the transformation process of ACMP/SIM in simulated body fluid(SBF)was also tracked to simulate and explore the in vivo mineralization performance of materials.We find that ACMP/SIM releases ions of Ca^(2+),Mg^(2+)and PO_(4)^(3),when it is immersed in SBF at 37℃,and a phase transformation occurred during which the initially amorphous ACMP turns into self-assembled hydroxyapatite(HAP).Furthermore,ACMP/SIM displays high cytocompatibility and promotes the proliferation and osteogenic differentiation of MC3T3-E1 cells.For the in vivo studies,lamellar ACMP/SIM/Collagen scaffolds with aligned pore structures were prepared and used to repair a rat defect model in calvaria.ACMP/SIM/Collagen scaffolds show a positive effect in promoting the regeneration of calvaria defect after 12weeks.The bioactive ACMP/SIM nanocomposites are promising as bone repair materials.Considering the facile preparation process and superior in vitro/vivo bioactivity,the as-prepared ACMP/SIM would be a potential candidate for bone related biomedical applications.
基金This work was supported by the National Natural Science Foundation of China(Contract Grant nos.51473098 and 51503127)Support Project of Science and Technology Department of Sichuan Province(Contract Grant no.2012FZ0007).
文摘Ternary chalcogenide compounds are such promising and have been used for much practical applications.As a sort of these compounds,cubanite(CuFe2S3)possess some unique properties which can be used in different fields.In our study,we developed a facile one pot synthesis of CuFe2S3 nanocrystals(NCs)at a low reaction temperature,and achieved a morphology and phase composition tuning of the NCs through changing a variety of precursors and surfactants,meanwhile improved their magnetism and optical properties.Eventually,well-ordered and‘nano-brick’like CuFe2S3 NCs were obtained and showed best magnetism and near-infrared fluorescence properties.Furthermore,the NCs were proved with good biocompatibility and possibility for cell labeling.This kind of materials with lower toxicity and potential of magnetic is bound to remedy the defects of photoluminescence quantum dots(QDs)and be with higher potential in the field of biological diagnosis and multi-functional system construction.