HIV and AIDS has continued to be a major public health concern, and hence one of the epidemics that the world resolved to end by 2030 as highlighted in sustainable development goals (SDGs). A colossal amount of effort...HIV and AIDS has continued to be a major public health concern, and hence one of the epidemics that the world resolved to end by 2030 as highlighted in sustainable development goals (SDGs). A colossal amount of effort has been taken to reduce new HIV infections, but there are still a significant number of new infections reported. HIV prevalence is more skewed towards the key population who include female sex workers (FSW), men who have sex with men (MSM), and people who inject drugs (PWID). The study design was retrospective and focused on key population enrolled in a comprehensive HIV and AIDS programme by the Kenya Red Cross Society from July 2019 to June 2021. Individuals who were either lost to follow up, defaulted (dropped out, transferred out, or relocated) or died were classified as attrition;while those who were active and alive by the end of the study were classified as retention. The study used density analysis to determine the spatial differences of key population attrition in the 19 targeted counties, and used Kilifi county as an example to map attrition cases in smaller administrative areas (sub-county level). The study used synthetic minority oversampling technique-nominal continuous (SMOTE-NC) to balance the datasets since the cases of attrition were much less than retention. The random survival forests model was then fitted to the balanced dataset. The model correctly identified attrition cases using the predicted ensemble mortality and their survival time using the estimated Kaplan-Meier survival function. The predictive performance of the model was strong and way better than random chance with concordance indices greater than 0.75.展开更多
For imbalanced datasets, the focus of classification is to identify samples of the minority class. The performance of current data mining algorithms is not good enough for processing imbalanced datasets. The synthetic...For imbalanced datasets, the focus of classification is to identify samples of the minority class. The performance of current data mining algorithms is not good enough for processing imbalanced datasets. The synthetic minority over-sampling technique(SMOTE) is specifically designed for learning from imbalanced datasets, generating synthetic minority class examples by interpolating between minority class examples nearby. However, the SMOTE encounters the overgeneralization problem. The densitybased spatial clustering of applications with noise(DBSCAN) is not rigorous when dealing with the samples near the borderline.We optimize the DBSCAN algorithm for this problem to make clustering more reasonable. This paper integrates the optimized DBSCAN and SMOTE, and proposes a density-based synthetic minority over-sampling technique(DSMOTE). First, the optimized DBSCAN is used to divide the samples of the minority class into three groups, including core samples, borderline samples and noise samples, and then the noise samples of minority class is removed to synthesize more effective samples. In order to make full use of the information of core samples and borderline samples,different strategies are used to over-sample core samples and borderline samples. Experiments show that DSMOTE can achieve better results compared with SMOTE and Borderline-SMOTE in terms of precision, recall and F-value.展开更多
Real-time prediction of the rock mass class in front of the tunnel face is essential for the adaptive adjustment of tunnel boring machines(TBMs).During the TBM tunnelling process,a large number of operation data are g...Real-time prediction of the rock mass class in front of the tunnel face is essential for the adaptive adjustment of tunnel boring machines(TBMs).During the TBM tunnelling process,a large number of operation data are generated,reflecting the interaction between the TBM system and surrounding rock,and these data can be used to evaluate the rock mass quality.This study proposed a stacking ensemble classifier for the real-time prediction of the rock mass classification using TBM operation data.Based on the Songhua River water conveyance project,a total of 7538 TBM tunnelling cycles and the corresponding rock mass classes are obtained after data preprocessing.Then,through the tree-based feature selection method,10 key TBM operation parameters are selected,and the mean values of the 10 selected features in the stable phase after removing outliers are calculated as the inputs of classifiers.The preprocessed data are randomly divided into the training set(90%)and test set(10%)using simple random sampling.Besides stacking ensemble classifier,seven individual classifiers are established as the comparison.These classifiers include support vector machine(SVM),k-nearest neighbors(KNN),random forest(RF),gradient boosting decision tree(GBDT),decision tree(DT),logistic regression(LR)and multilayer perceptron(MLP),where the hyper-parameters of each classifier are optimised using the grid search method.The prediction results show that the stacking ensemble classifier has a better performance than individual classifiers,and it shows a more powerful learning and generalisation ability for small and imbalanced samples.Additionally,a relative balance training set is obtained by the synthetic minority oversampling technique(SMOTE),and the influence of sample imbalance on the prediction performance is discussed.展开更多
文摘HIV and AIDS has continued to be a major public health concern, and hence one of the epidemics that the world resolved to end by 2030 as highlighted in sustainable development goals (SDGs). A colossal amount of effort has been taken to reduce new HIV infections, but there are still a significant number of new infections reported. HIV prevalence is more skewed towards the key population who include female sex workers (FSW), men who have sex with men (MSM), and people who inject drugs (PWID). The study design was retrospective and focused on key population enrolled in a comprehensive HIV and AIDS programme by the Kenya Red Cross Society from July 2019 to June 2021. Individuals who were either lost to follow up, defaulted (dropped out, transferred out, or relocated) or died were classified as attrition;while those who were active and alive by the end of the study were classified as retention. The study used density analysis to determine the spatial differences of key population attrition in the 19 targeted counties, and used Kilifi county as an example to map attrition cases in smaller administrative areas (sub-county level). The study used synthetic minority oversampling technique-nominal continuous (SMOTE-NC) to balance the datasets since the cases of attrition were much less than retention. The random survival forests model was then fitted to the balanced dataset. The model correctly identified attrition cases using the predicted ensemble mortality and their survival time using the estimated Kaplan-Meier survival function. The predictive performance of the model was strong and way better than random chance with concordance indices greater than 0.75.
基金supported by the National Key Research and Development Program of China(2018YFB1003700)the Scientific and Technological Support Project(Society)of Jiangsu Province(BE2016776)+2 种基金the“333” project of Jiangsu Province(BRA2017228 BRA2017401)the Talent Project in Six Fields of Jiangsu Province(2015-JNHB-012)
文摘For imbalanced datasets, the focus of classification is to identify samples of the minority class. The performance of current data mining algorithms is not good enough for processing imbalanced datasets. The synthetic minority over-sampling technique(SMOTE) is specifically designed for learning from imbalanced datasets, generating synthetic minority class examples by interpolating between minority class examples nearby. However, the SMOTE encounters the overgeneralization problem. The densitybased spatial clustering of applications with noise(DBSCAN) is not rigorous when dealing with the samples near the borderline.We optimize the DBSCAN algorithm for this problem to make clustering more reasonable. This paper integrates the optimized DBSCAN and SMOTE, and proposes a density-based synthetic minority over-sampling technique(DSMOTE). First, the optimized DBSCAN is used to divide the samples of the minority class into three groups, including core samples, borderline samples and noise samples, and then the noise samples of minority class is removed to synthesize more effective samples. In order to make full use of the information of core samples and borderline samples,different strategies are used to over-sample core samples and borderline samples. Experiments show that DSMOTE can achieve better results compared with SMOTE and Borderline-SMOTE in terms of precision, recall and F-value.
基金funded by the National Natural Science Foundation of China(Grant No.41941019)the State Key Laboratory of Hydroscience and Engineering(Grant No.2019-KY-03)。
文摘Real-time prediction of the rock mass class in front of the tunnel face is essential for the adaptive adjustment of tunnel boring machines(TBMs).During the TBM tunnelling process,a large number of operation data are generated,reflecting the interaction between the TBM system and surrounding rock,and these data can be used to evaluate the rock mass quality.This study proposed a stacking ensemble classifier for the real-time prediction of the rock mass classification using TBM operation data.Based on the Songhua River water conveyance project,a total of 7538 TBM tunnelling cycles and the corresponding rock mass classes are obtained after data preprocessing.Then,through the tree-based feature selection method,10 key TBM operation parameters are selected,and the mean values of the 10 selected features in the stable phase after removing outliers are calculated as the inputs of classifiers.The preprocessed data are randomly divided into the training set(90%)and test set(10%)using simple random sampling.Besides stacking ensemble classifier,seven individual classifiers are established as the comparison.These classifiers include support vector machine(SVM),k-nearest neighbors(KNN),random forest(RF),gradient boosting decision tree(GBDT),decision tree(DT),logistic regression(LR)and multilayer perceptron(MLP),where the hyper-parameters of each classifier are optimised using the grid search method.The prediction results show that the stacking ensemble classifier has a better performance than individual classifiers,and it shows a more powerful learning and generalisation ability for small and imbalanced samples.Additionally,a relative balance training set is obtained by the synthetic minority oversampling technique(SMOTE),and the influence of sample imbalance on the prediction performance is discussed.