Among challenges implicit in the transition to the post-fossil fuel energetic model,the finite amount of resources available for the technological implementation of CO_(2) revalorizing processes arises as a central is...Among challenges implicit in the transition to the post-fossil fuel energetic model,the finite amount of resources available for the technological implementation of CO_(2) revalorizing processes arises as a central issue.The development of fully renewable catalytic systems with easier metal recovery strategies would promote the viability and sustainability of synthetic natural gas production circular routes.Taking Ni and NiFe catalysts supported over g-Al_(2)O_(3) oxide as reference materials,this work evaluates the potentiality of Ni and NiFe supported biochar catalysts for CO_(2) methanation.The development of competitive biochar catalysts was found dependent on the creation of basic sites on the catalyst surface.Displaying lower Turn Over Frequencies than Ni/Al catalyst,the absence of basic sites achieved over Ni/C catalyst was related to the depleted catalyst performances.For NiFe catalysts,analogous Ni_(5)Fe_(1) alloys were constituted over both alumina and biochar supports.The highest specific activity of the catalyst series,exhibited by the NiFe/C catalyst,was related to the development of surface basic sites along with weaker NiFe-C interactions,which resulted in increased Ni0:NiO surface populations under reaction conditions.In summary,the present work establishes biochar supports as a competitive material to consider within the future low-carbon energetic panorama.展开更多
The objective of this investigation is to analyze the impact of the flue gas recirculation (FGR) ratio on the different energy inputs and outputs of a SNGCC power plant as well as its overall efficiency. Simulation re...The objective of this investigation is to analyze the impact of the flue gas recirculation (FGR) ratio on the different energy inputs and outputs of a SNGCC power plant as well as its overall efficiency. Simulation results indicate that increasing flue gas recirculation increases the energy consumed by the recirculation compressor and the energy produced by the gas turbine. On the other hand, it decreases the production of energy of the steam turbine and the energy consumed by the pump of the steam cycle. The overall energy efficiency of the SNGCC power plant is highest (41.09%) at a value of 0.20 of the flue gas recirculation. However, the flue gas composition with a FGR ratio of 0.37 is more suitable for effective absorption of carbon dioxide by amine solutions. Based on the low heating value (LHV) of hydrogen, the corresponding overall efficiency of the power plant is 39.18% and the net power output of the plant is 1273 kW for consumption of 97.5 kg/hr. of hydrogen.展开更多
The hydrogenation of CO to synthetic natural gas (SNG) needs a high molar ratio of H2/CO (usually large than 3.0 in industry), which consumes a large abundant of hydrogen. The reverse dry reforming reaction (RDR, 2H2 ...The hydrogenation of CO to synthetic natural gas (SNG) needs a high molar ratio of H2/CO (usually large than 3.0 in industry), which consumes a large abundant of hydrogen. The reverse dry reforming reaction (RDR, 2H2 + 2CO←→CH4 + CO2), combining CO methanation with water-gas-shift reaction, can significantly decrease the H2/CO molar ratio to 1 for SNG production. A detailed thermodynamic analysis of RDR reaction was carried out based on the Gibbs free energy minimization method. The effect of temperature, pressure. H2/CO ratio and the addition of H2O, CH4, CO2, O2 and C2H4 into the feed gas on CO conversion, CH4 and CO2 selectivity, as well as CH4 and carbon yield, are discussed. Experimental results obtained on homemade impregnated Ni/Al2O3 catalyst are compared with the calculations. The results demonstrate that low temperature (200-500 °C), high pressure (1-5 MPa) and high H2/CO ratio (at least 1) promote CO conversion and CH4 selectivity and decrease carbon yield. Steam and CO2 in the feed gas decrease the CH4 selectivity and carb on yield, and enhance the CO2 con tent. Extra CH4 elevates the CH4 content in the products, but leads to more carbon formation at high temperatures. O2 significantly decreases the CH4 selectivity and C2H4 results in the generation of carbon.展开更多
The paper presents an energy performance assessment of CO2 removal for crude synthetic natural gas (SNG) upgrade by Selexol absorption process. A simplified process simulation of the Selexol process concerning power...The paper presents an energy performance assessment of CO2 removal for crude synthetic natural gas (SNG) upgrade by Selexol absorption process. A simplified process simulation of the Selexol process concerning power requirement and separation performance was developed. The assessment indicates that less pressure difference between crude SNG and absorption pressure favors the energy performance of CO2 removal process. When both crude SNG and absorption pressures are 20 bar, CO2 removal process has the best energy performance. The optimal specific power consumption of the CO2 removal process is 566 kJ/kgCO2. The sensitivity analysis shows that the CO2 removal efficiency would significantly influence the total power consumption of the removal process, as well as higher heating value (HHV) and CO2 content in SNG. However, the specific power consumption excluding crude SNG and SNG compressions changes little with the variance of CO2 removal efficiency. If by-product CO2 is compressed for CO2 capture, the process would turn into a CO2-sink for the atmosphere. Correspondingly, an increase of 281 kJ/kgCO2 in specific power consumption is required for compressing the separated CO2.展开更多
Hydrate formation rate plays an important role in the making of hydrates for natural gas storage. The effect of sodium dodecyl sulfate (SDS), alkyl polysaccharide glycoside (APG) and cyclopentane (CP) on natural gas h...Hydrate formation rate plays an important role in the making of hydrates for natural gas storage. The effect of sodium dodecyl sulfate (SDS), alkyl polysaccharide glycoside (APG) and cyclopentane (CP) on natural gas hydrate formation rate, induction time and storage capacity was studied. Micellar surfactant solutions were found to increase hydrate formation rate in a quiescent system and improve hydrate formation rate and natural gas storage capacity. The process of hydrate formation includes two stages with surfactant presence. Hydrate forms quickly in the first stage, and then the formation rate is slowed down. Surfactants (SDS or APG) reduce the induction time of hydrate formation. The effect of an anionic surfactant (SDS) on gas storage in hydrates is more pronounced compared to a nonionic surfactant (APG). CP also reduces the induction time of hydrate formation, but can not improve the natural gas storage capacity in hydrates.展开更多
This paper presents thermodynamic evaluations of the agriculture residual-to-SNG process by thermochemical conversion, which mainly consists of the interconnected fluidized beds, hot gas cleaning, fluidized bed methan...This paper presents thermodynamic evaluations of the agriculture residual-to-SNG process by thermochemical conversion, which mainly consists of the interconnected fluidized beds, hot gas cleaning, fluidized bed methanation reactor and Selexol absorption unit. The process was modeled using Aspen Plus soft-ware. The process performances, i.e., CH4 content in SNG~ higher heating value and yield of SNGexergy efficiencies with and without heat recovery, unit power consumption, were evaluated firstly. The results indicate that when the other parameters remain unchanged, the steam-to-biomass ratio at carbon boundary point is the optimal value for the process. Im proving the preheating temperatures of air and gasifying agent is beneficial for the SNG yield and exergy effi ciencies. Due to the effects of COz removal efficiency, there are two optimization objectives for the SNG produc tion process: (I) to maximize CH4 content in SNC or (II) to maximize SNG yield. Further, the comparison among different feedstocks indicates that the decreasing order of SNG yield is: corn stalk 〉 wheat straw 〉 rice straw. The evaluation on the potential of agriculture-based SNG shows that the potential annual production of agriculture re sidual-based SNG could be between 555 108 - 611 108 m3 with utilization of 100% of the available unexplored resources. The agriculture residual-based SNG could play a significant role on solving the big shortfall of China's natural gas supply in future.展开更多
The objective of the first part of the investigation was to use Aspen Plus software and the Redlich-Kwong-Soave equation of state in order to simulate an adiabatic methanation reactor for the production of synthetic n...The objective of the first part of the investigation was to use Aspen Plus software and the Redlich-Kwong-Soave equation of state in order to simulate an adiabatic methanation reactor for the production of synthetic natural methane (SNG) using 1 kg/hr<span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">of carbon dioxide. In this paper, we define the Synthetic Natural Gas Combined Cycle (SNGCC) as a combined cycle power plant where the fuel is synthetic natural gas (SNG) produced by a methanation reactor. The feed of the methanation reactor is the recycled stream of carbon dioxide of a CO<sub>2</sub> capture unit treating the flue gas of the SNGCC power plant. The objective of the second part of the investigation is the utilization of Aspen plus software with SRK equation of state for the simulation of the SNGCC power plant. The metallurgical limitation of the gas turbine was fixed at 1300<sup><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°<span style="font-family:Verdana;white-space:normal;"></span></span></sup></span></span>C in this investigation. For effective absorption by amine solutions, the molar percentage of CO<sub>2</sub> in the flue gas should be higher than 10%. Moreover, in order to reduce technical problems linked to oxidative degradation of amine in the CO<sub>2</sub> capture plant, the percentage of O<sub>2</sub> in the flue gas should also be lower than 5%. To reach this goal, the primary air for combustion has 10% excess air (compared to stoichiometric air) and 37% of the flue </span><span style="font-family:Verdana;">gas leaving the SNGCC is recirculated as the secondary air for cooling the</span><span style="font-family:Verdana;"> turbine</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> As a result, the concentration of CO<sub>2</sub> and O<sub>2</sub></span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">of the flue gas entering the CO<sub>2</sub> capture unit were respectively equal to 10.2% and 2.01%. The simulation results of the SNGCC power plant indicate that 6.6 MJ of electricity are produced for each kg of carbon dioxide recycled from the CO<sub>2</sub> capture unit of the power plant. In other terms, the production of the 24.88 kg/hr</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">of synthetic natural gas (SNG) consumes 62.36 kg/hr</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">of recycled carbon dioxide and 16.4 kg/hr</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">of hydrogen. The SNG produced by the methanation reactor of the power plant generates 114 kW of electricity. It is assumed in this paper that the hydrogen needed for the methanation of carbon dioxide is a product of a catalytic reforming plant that produces gasoline from heavy naphta fraction of an atmospheric distillation unit of crude oil.</span></span></span>展开更多
采用Well to Wheel评价了从煤炭出发利用不同技术路线满足天然气下游需求的全生命周期能耗情况,并以北京、上海为例探讨了煤制天然气及其替代技术路线的整体影响。研究结果表明,煤制天然气能够解决清洁用能以及终端污染的问题,但是这是...采用Well to Wheel评价了从煤炭出发利用不同技术路线满足天然气下游需求的全生命周期能耗情况,并以北京、上海为例探讨了煤制天然气及其替代技术路线的整体影响。研究结果表明,煤制天然气能够解决清洁用能以及终端污染的问题,但是这是以较高的全生命周期能耗为代价的,以北京为例,存在比煤制天然气节省煤炭消耗33%的更加合理的利用途径。因此中国远期煤制天然气项目须谨慎规划和研究。展开更多
文摘Among challenges implicit in the transition to the post-fossil fuel energetic model,the finite amount of resources available for the technological implementation of CO_(2) revalorizing processes arises as a central issue.The development of fully renewable catalytic systems with easier metal recovery strategies would promote the viability and sustainability of synthetic natural gas production circular routes.Taking Ni and NiFe catalysts supported over g-Al_(2)O_(3) oxide as reference materials,this work evaluates the potentiality of Ni and NiFe supported biochar catalysts for CO_(2) methanation.The development of competitive biochar catalysts was found dependent on the creation of basic sites on the catalyst surface.Displaying lower Turn Over Frequencies than Ni/Al catalyst,the absence of basic sites achieved over Ni/C catalyst was related to the depleted catalyst performances.For NiFe catalysts,analogous Ni_(5)Fe_(1) alloys were constituted over both alumina and biochar supports.The highest specific activity of the catalyst series,exhibited by the NiFe/C catalyst,was related to the development of surface basic sites along with weaker NiFe-C interactions,which resulted in increased Ni0:NiO surface populations under reaction conditions.In summary,the present work establishes biochar supports as a competitive material to consider within the future low-carbon energetic panorama.
文摘The objective of this investigation is to analyze the impact of the flue gas recirculation (FGR) ratio on the different energy inputs and outputs of a SNGCC power plant as well as its overall efficiency. Simulation results indicate that increasing flue gas recirculation increases the energy consumed by the recirculation compressor and the energy produced by the gas turbine. On the other hand, it decreases the production of energy of the steam turbine and the energy consumed by the pump of the steam cycle. The overall energy efficiency of the SNGCC power plant is highest (41.09%) at a value of 0.20 of the flue gas recirculation. However, the flue gas composition with a FGR ratio of 0.37 is more suitable for effective absorption of carbon dioxide by amine solutions. Based on the low heating value (LHV) of hydrogen, the corresponding overall efficiency of the power plant is 39.18% and the net power output of the plant is 1273 kW for consumption of 97.5 kg/hr. of hydrogen.
文摘The hydrogenation of CO to synthetic natural gas (SNG) needs a high molar ratio of H2/CO (usually large than 3.0 in industry), which consumes a large abundant of hydrogen. The reverse dry reforming reaction (RDR, 2H2 + 2CO←→CH4 + CO2), combining CO methanation with water-gas-shift reaction, can significantly decrease the H2/CO molar ratio to 1 for SNG production. A detailed thermodynamic analysis of RDR reaction was carried out based on the Gibbs free energy minimization method. The effect of temperature, pressure. H2/CO ratio and the addition of H2O, CH4, CO2, O2 and C2H4 into the feed gas on CO conversion, CH4 and CO2 selectivity, as well as CH4 and carbon yield, are discussed. Experimental results obtained on homemade impregnated Ni/Al2O3 catalyst are compared with the calculations. The results demonstrate that low temperature (200-500 °C), high pressure (1-5 MPa) and high H2/CO ratio (at least 1) promote CO conversion and CH4 selectivity and decrease carbon yield. Steam and CO2 in the feed gas decrease the CH4 selectivity and carb on yield, and enhance the CO2 con tent. Extra CH4 elevates the CH4 content in the products, but leads to more carbon formation at high temperatures. O2 significantly decreases the CH4 selectivity and C2H4 results in the generation of carbon.
基金supported by the Special Fund for Major State Basic Research Projects of China(2010CB732206)
文摘The paper presents an energy performance assessment of CO2 removal for crude synthetic natural gas (SNG) upgrade by Selexol absorption process. A simplified process simulation of the Selexol process concerning power requirement and separation performance was developed. The assessment indicates that less pressure difference between crude SNG and absorption pressure favors the energy performance of CO2 removal process. When both crude SNG and absorption pressures are 20 bar, CO2 removal process has the best energy performance. The optimal specific power consumption of the CO2 removal process is 566 kJ/kgCO2. The sensitivity analysis shows that the CO2 removal efficiency would significantly influence the total power consumption of the removal process, as well as higher heating value (HHV) and CO2 content in SNG. However, the specific power consumption excluding crude SNG and SNG compressions changes little with the variance of CO2 removal efficiency. If by-product CO2 is compressed for CO2 capture, the process would turn into a CO2-sink for the atmosphere. Correspondingly, an increase of 281 kJ/kgCO2 in specific power consumption is required for compressing the separated CO2.
文摘Hydrate formation rate plays an important role in the making of hydrates for natural gas storage. The effect of sodium dodecyl sulfate (SDS), alkyl polysaccharide glycoside (APG) and cyclopentane (CP) on natural gas hydrate formation rate, induction time and storage capacity was studied. Micellar surfactant solutions were found to increase hydrate formation rate in a quiescent system and improve hydrate formation rate and natural gas storage capacity. The process of hydrate formation includes two stages with surfactant presence. Hydrate forms quickly in the first stage, and then the formation rate is slowed down. Surfactants (SDS or APG) reduce the induction time of hydrate formation. The effect of an anionic surfactant (SDS) on gas storage in hydrates is more pronounced compared to a nonionic surfactant (APG). CP also reduces the induction time of hydrate formation, but can not improve the natural gas storage capacity in hydrates.
基金supported by the Special Fund for Major State Basic Research Projects of China (2010CB732206, 2013CB228106)the Scientific Research Foundation of Graduate School of Southeast University (YBJJ1219)
文摘This paper presents thermodynamic evaluations of the agriculture residual-to-SNG process by thermochemical conversion, which mainly consists of the interconnected fluidized beds, hot gas cleaning, fluidized bed methanation reactor and Selexol absorption unit. The process was modeled using Aspen Plus soft-ware. The process performances, i.e., CH4 content in SNG~ higher heating value and yield of SNGexergy efficiencies with and without heat recovery, unit power consumption, were evaluated firstly. The results indicate that when the other parameters remain unchanged, the steam-to-biomass ratio at carbon boundary point is the optimal value for the process. Im proving the preheating temperatures of air and gasifying agent is beneficial for the SNG yield and exergy effi ciencies. Due to the effects of COz removal efficiency, there are two optimization objectives for the SNG produc tion process: (I) to maximize CH4 content in SNC or (II) to maximize SNG yield. Further, the comparison among different feedstocks indicates that the decreasing order of SNG yield is: corn stalk 〉 wheat straw 〉 rice straw. The evaluation on the potential of agriculture-based SNG shows that the potential annual production of agriculture re sidual-based SNG could be between 555 108 - 611 108 m3 with utilization of 100% of the available unexplored resources. The agriculture residual-based SNG could play a significant role on solving the big shortfall of China's natural gas supply in future.
文摘The objective of the first part of the investigation was to use Aspen Plus software and the Redlich-Kwong-Soave equation of state in order to simulate an adiabatic methanation reactor for the production of synthetic natural methane (SNG) using 1 kg/hr<span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">of carbon dioxide. In this paper, we define the Synthetic Natural Gas Combined Cycle (SNGCC) as a combined cycle power plant where the fuel is synthetic natural gas (SNG) produced by a methanation reactor. The feed of the methanation reactor is the recycled stream of carbon dioxide of a CO<sub>2</sub> capture unit treating the flue gas of the SNGCC power plant. The objective of the second part of the investigation is the utilization of Aspen plus software with SRK equation of state for the simulation of the SNGCC power plant. The metallurgical limitation of the gas turbine was fixed at 1300<sup><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°<span style="font-family:Verdana;white-space:normal;"></span></span></sup></span></span>C in this investigation. For effective absorption by amine solutions, the molar percentage of CO<sub>2</sub> in the flue gas should be higher than 10%. Moreover, in order to reduce technical problems linked to oxidative degradation of amine in the CO<sub>2</sub> capture plant, the percentage of O<sub>2</sub> in the flue gas should also be lower than 5%. To reach this goal, the primary air for combustion has 10% excess air (compared to stoichiometric air) and 37% of the flue </span><span style="font-family:Verdana;">gas leaving the SNGCC is recirculated as the secondary air for cooling the</span><span style="font-family:Verdana;"> turbine</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> As a result, the concentration of CO<sub>2</sub> and O<sub>2</sub></span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">of the flue gas entering the CO<sub>2</sub> capture unit were respectively equal to 10.2% and 2.01%. The simulation results of the SNGCC power plant indicate that 6.6 MJ of electricity are produced for each kg of carbon dioxide recycled from the CO<sub>2</sub> capture unit of the power plant. In other terms, the production of the 24.88 kg/hr</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">of synthetic natural gas (SNG) consumes 62.36 kg/hr</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">of recycled carbon dioxide and 16.4 kg/hr</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">of hydrogen. The SNG produced by the methanation reactor of the power plant generates 114 kW of electricity. It is assumed in this paper that the hydrogen needed for the methanation of carbon dioxide is a product of a catalytic reforming plant that produces gasoline from heavy naphta fraction of an atmospheric distillation unit of crude oil.</span></span></span>
文摘采用Well to Wheel评价了从煤炭出发利用不同技术路线满足天然气下游需求的全生命周期能耗情况,并以北京、上海为例探讨了煤制天然气及其替代技术路线的整体影响。研究结果表明,煤制天然气能够解决清洁用能以及终端污染的问题,但是这是以较高的全生命周期能耗为代价的,以北京为例,存在比煤制天然气节省煤炭消耗33%的更加合理的利用途径。因此中国远期煤制天然气项目须谨慎规划和研究。