期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effects of confinement on rock mass modulus:A synthetic rock mass modelling(SRM) study 被引量:9
1
作者 I.Vazaios K.Farahmand +1 位作者 N.Vlachopoulos M.S.Diederichs 《Journal of Rock Mechanics and Geotechnical Engineering》 CSCD 2018年第3期436-456,共21页
The main objective of this paper is to examine the influence of the applied confining stress on the rock mass modulus of moderately jointed rocks(well interlocked undisturbed rock mass with blocks formed by three or ... The main objective of this paper is to examine the influence of the applied confining stress on the rock mass modulus of moderately jointed rocks(well interlocked undisturbed rock mass with blocks formed by three or less intersecting joints). A synthetic rock mass modelling(SRM) approach is employed to determine the mechanical properties of the rock mass. In this approach, the intact body of rock is represented by the discrete element method(DEM)-Voronoi grains with the ability of simulating the initiation and propagation of microcracks within the intact part of the model. The geometry of the preexisting joints is generated by employing discrete fracture network(DFN) modelling based on field joint data collected from the Brockville Tunnel using LiDAR scanning. The geometrical characteristics of the simulated joints at a representative sample size are first validated against the field data, and then used to measure the rock quality designation(RQD), joint spacing, areal fracture intensity(P21), and block volumes. These geometrical quantities are used to quantitatively determine a representative range of the geological strength index(GSI). The results show that estimating the GSI using the RQD tends to make a closer estimate of the degree of blockiness that leads to GSI values corresponding to those obtained from direct visual observations of the rock mass conditions in the field. The use of joint spacing and block volume in order to quantify the GSI value range for the studied rock mass suggests a lower range compared to that evaluated in situ. Based on numerical modelling results and laboratory data of rock testing reported in the literature, a semi-empirical equation is proposed that relates the rock mass modulus to confinement as a function of the areal fracture intensity and joint stiffness. 展开更多
关键词 synthetic rock mass modelling (SRM) Discrete fracture network (DFN) rock mass modulus Geological strength index (GSI) CONFINEMENT
下载PDF
Slope stability assessment of an open pit using lattice-spring-based synthetic rock mass (LS-SRM) modeling approach
2
作者 Subash Bastola Ming Cai Branko Damjanac 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第5期927-942,共16页
Discontinuity waviness is one of the most important properties that influence shear strength of jointed rock masses,and it should be incorporated into numerical models for slope stability assessment.However,in most ex... Discontinuity waviness is one of the most important properties that influence shear strength of jointed rock masses,and it should be incorporated into numerical models for slope stability assessment.However,in most existing numerical modeling tools,discontinuities are often simplified into planar surfaces.Discrete fracture network modeling tools such as MoFrac allow the simulation of non-planar discontinuities which can be incorporated into lattice-spring-based geomechanical software such as Slope Model for slope stability assessment.In this study,the slope failure of the south wall at Cadia Hill open pit mine is simulated using the lattice-spring-based synthetic rock mass(LS-SRM)modeling approach.First,the slope model is calibrated using field displacement monitoring data,and then the influence of different discontinuity configurations on the stability of the slope is investigated.The modeling results show that the slope with non-planar discontinuities is comparatively more stable than the ones with planar discontinuities.In addition,the slope becomes increasingly unstable with the increases of discontinuity intensity and size.At greater pit depth with higher in situ stress,both the slope models with planar and non-planar discontinuities experience localized failures due to very high stress concentrations,and the slope model with planar discontinuities is more deformable and less stable than that with non-planar discontinuities. 展开更多
关键词 Lattice-spring-based synthetic rock mass (LS-SRM)modeling Non-planar discontinuities Slope stability Slope model Discrete fracture network(DFN)modeling
下载PDF
Triaxial compression behavior of large-scale jointed coal: a numerical study
3
作者 Xiaoqing Wang Fuqiang Gao 《International Journal of Coal Science & Technology》 EI CAS CSCD 2022年第5期81-95,共15页
Accurate estimation of the triaxial compression behavior of jointed coal is essential for coal mining.Few studies addressed the triaxial compression behavior of large-scale rock mass,especially with real joint geometr... Accurate estimation of the triaxial compression behavior of jointed coal is essential for coal mining.Few studies addressed the triaxial compression behavior of large-scale rock mass,especially with real joint geometry.We employed a numerical synthetic rock mass(SRM)method to study the triaxial compression behavior of jointed coal.Jointed-coal specimens were constructed based on in-situ joint measurements and microparameter calibration against laboratory experiments.A series of triaxial compression tests under different loading orientations and confining pressures were numerically performed to obtain joint and confining-pressure effects on the triaxial compression behavior and reveal the failure mechanism of jointed coal.Results suggest that the triaxial compression behavior of the jointed coal has strong joint and confining-pressure effects.Joints weaken the strength and elastic modulus,reduce the lateral deformation,and affect the geometries of the shear-rupture surface.An increase in the confining pressure causes the peak and residual strength increase significantly.With an increase in the confining pressure,the elastic modulus increases sharply at low confining pressure,the mechanical behavior transitions from brittleness to ductility,the failure mode transitions from shear-rupture surface to plastic flow,and the joint effect diminishes and even disappears.The jointed coal fails by means of a shear-rupture surface under triaxial compression loading with a confining pressure(which is not too high),and the geometries of the shear-rupture surface vary with the distribution of joints. 展开更多
关键词 Jointed coal Triaxial compression synthetic rock mass Failure mode
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部