期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
Characterization and Molecular Mapping of a Stripe Rust Resistance Gene in Synthetic Wheat CI110 被引量:5
1
作者 REN Qiang LIU Hui-juan +4 位作者 ZHANG Zeng-yan FENG Jing XU Shi-chang PU Zong-jun XIN Zhi-yong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第4期521-527,共7页
Stripe rust,caused by Puccinia striiformis f.sp.tritici(Pst),is one of the most destructive diseases of wheat(Triticum aestivum L.).To diversify stripe rust-resistant resources for wheat breeding programs,a CIMMYT... Stripe rust,caused by Puccinia striiformis f.sp.tritici(Pst),is one of the most destructive diseases of wheat(Triticum aestivum L.).To diversify stripe rust-resistant resources for wheat breeding programs,a CIMMYT synthetic wheat line CI110 was identified to be resistant to 28 isolates of Pst,including 6 Chinese prevalent races CYR28-CYR33.Genetic analysis indicated that a single dominant gene was responsible for the stripe rust resistance in CI110,temporarily designated YrC110.A molecular map,harboring YrC110 and 9 linked SSR markers,was constructed through simple sequence repeat(SSR),and bulked segregant analysis.These linked markers and YrC110 were assigned on the short arm of chromosome 1B using the Chinese Spring nullisomic-tetrasomic and ditelosomic stocks.Gene postulation based on seedling reaction patterns to 30 Pst isolates suggested that the resistance gene YrC110 seemed different from the other known resistance genes tested,such as Yr9,Yr10,Yr15,Yr24,and Yr26/YrCH42.Four SSR markers Xbarc187150,Xgwm18227,Xgwm11223,and Xbarc240292 distinguished YrC110 from Yr10,Yr15,Yr24,and Yr26/YrCH42,and could be used as diagnostic ones for YrC110 in wheat resistant breeding programs against stripe rust. 展开更多
关键词 synthetic wheat Puccinia striiformis f.sp.tritici resistance gene simple sequence repeat(SSR) marker gene postulation
下载PDF
Comparison of Newly Synthetic Hexaploid Wheat with Its Donors on SSR Products 被引量:2
2
作者 张连全 孙根楼 +5 位作者 颜泽洪 陈其皎 袁中伟 兰秀锦 郑有良 刘登才 《Journal of Genetics and Genomics》 SCIE CAS CSCD 北大核心 2007年第10期939-946,共8页
Microsatellites or SSRs as powerful genetic markers have widely been used in genetics and evolutionary biology in common wheat. Because of the high polymorphism, newly synthesized hexaploid wheat has been used in the ... Microsatellites or SSRs as powerful genetic markers have widely been used in genetics and evolutionary biology in common wheat. Because of the high polymorphism, newly synthesized hexaploid wheat has been used in the construction of genetic segregation population for SSR markers, However, data on the evolution of microsatellites during the polyploidization event of hexaploid wheat are limited. In this study, 66 pairs of specific to A/B genome SSR patterns among newly synthesized hexaploid wheat, the donor tetraploid wheat and Aegilops tauschii were compared. The results indicated that most SSR markers were conserved during the polyploidization events of newly synthetic hexaploid wheat, from Triticum turgidum and Ae. tauschii. Over 70% A/B genome specific SSR markers could amplify the SSR sequences from the D genome ofAe. tauschii. Most amplified fragments from Ae, tauschii were detected in synthetic hexaploid at corresponding positions with the same sizes and patterns as in its parental Ae. tauschii. This suggested that these SSR markers, specific for A/B genome in common wheat, could amplify SSR products of D genome besides A/B genome in the newly synthesized hexaploid wheat, that is, these SSR primers specific for A/B genome in common wheat were nonspecific for the A/B genome in the synthetic hexaploid wheat. In addition, one amplified Ae. tauschii product was not detected in the newly synthetic hexaploid wheat. An extra-amplified product was found in the newly synthetic hexaploid wheat. These results suggested that caution should be taken when using SSR marker to genotype newly synthetic hexaploid wheat. 展开更多
关键词 synthetic hexaploid wheat SSR (microsatellite) genome specificity transferability molecular marker
下载PDF
QTL Mapping for Important Agronomic Traits in Synthetic Hexaploid Wheat Derived from Aegiliops tauschii ssp. tauschii 被引量:6
3
作者 YU Ma CHEN Guo-yue +9 位作者 ZHANG Lian-quan LIU Ya-xi LIU Deng-cai WANG Ji-rui PU Zhi-en ZHANG Li LAN Xiu-jin WEI Yu-ming LIU Chun-ji ZHENG You-liang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第9期1835-1844,共10页
Aegiliops tauschii is classified into two subspecies: Ae. tauschii ssp. tauschii and Ae. tauschii ssp. strangulata. Novel genetic variations exist in Ae. tauschii ssp. tauschii that can be utilized in wheat improveme... Aegiliops tauschii is classified into two subspecies: Ae. tauschii ssp. tauschii and Ae. tauschii ssp. strangulata. Novel genetic variations exist in Ae. tauschii ssp. tauschii that can be utilized in wheat improvement. We synthesized a hexaploid wheat genotype(SHW-L1) by crossing an Ae. tauschii ssp. tauschii accession(AS60) with a tetraploid wheat genotype(AS2255). A population consisting of 171 F8 recombinant inbred lines was developed from SHW-L1 and Chuanmai 32 to identify QTLs associated with agronomic traits. A new genetic map with high density was constructed and used to detect the QTLs for heading date, kernel width, spike length, spikelet number, and thousand kernel weight. A total of 30 putative QTLs were identified for five investigated traits. Thirteen QTLs were located on D genomes of SHW-L1, six of them showed positive effect on agronomic traits. Chromosome region flanked by wPt-6133–wPt-8134 on 2D carried five environment-independent QTLs. Each QTL accounted for more than 10% phenotypic variance. These QTLs were highly consistent across environments and should be used in wheat breeding. 展开更多
关键词 genetic map QTL DART agronomic traits synthetic wheat Aegilops tauschii ssp.tauschii
下载PDF
Synthetic Hexaploid Wheat: Yesterday, Today, and Tomorrow 被引量:11
4
作者 Aili Li Dengcai Liu +2 位作者 Wuyun Yang Masahiro Kishii Long Mao 《Engineering》 2018年第4期552-558,共7页
In recent years, wheat yield per hectare appears to have reached a plateau, leading to concerns for future food security with an increasing world population. Since its invention, synthetic hexaploid wheat (SHW) has ... In recent years, wheat yield per hectare appears to have reached a plateau, leading to concerns for future food security with an increasing world population. Since its invention, synthetic hexaploid wheat (SHW) has been shown to be an effective genetic resource for transferring agronomically important genes from wild relatives to common wheat. It provides new sources for yield potential, drought tolerance, disease resistance, and nutrient-use efficiency when bred conventionally with modern wheat varieties. SHW is becoming more and more important for modern wheat breeding. Here, we review the current status of SHW generation, study, and application, with a particular focus on its contribution to wheat breeding. We also briefly introduce the most recent progress in our understanding of the molecular mechanisms for growth vigor in SHW. Advances in new technologies have made the complete wheat reference genome available, which offers a promising future for the study and applications of SHW in wheat improvement that are essential to meet global food demand. 展开更多
关键词 synthetic wheat wheat POLYPLOIDIZATION Disease resistance Stress tolerance Yield
下载PDF
Discovery of quantitative trait loci for crossability from a synthetic wheat genotype
5
作者 Li Zhang Jin Wang +1 位作者 Ronghua Zhou Jizeng Jia 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2011年第8期373-378,共6页
Crossability between wheat and rye is an important trait for wheat improvement. No quantitative trait loci (QTLs) were detected from wheat ancestors previously. The objectives of this study were to dissect the QTLs ... Crossability between wheat and rye is an important trait for wheat improvement. No quantitative trait loci (QTLs) were detected from wheat ancestors previously. The objectives of this study were to dissect the QTLs for crossability using 111 introgression lines (ILs) derived from synthetic hexaploid wheat. A total of 1275 SSR markers were screened for polymorphism between the two parents, and 552 markers of them displayed polymorphism, of which 64 were selected for genotyping the 111 BCsF6 ILs. Field trials were performed in a Latinized ~z-lattice design in Luoyang and Jiaozuo of Henan Province of China in 2007--2008 and 2008-2009 cropping seasons. One-way ANOVA and interval mapping (IM) analysis were used to detect QTL for crossability between wheat and rye. A total of 13 putative QTLs were detected. Five of them, QCa.caas.lA, QCa.caas.2D, QCa.caas.4B, QCa.caas.5B and QCa.caas.6A, were detected in both trials and three of them, QCa.caas.2D, QCa.caas.4B and QCa.caas.6A, were novel. The positive effect allele of the four QTLs came from the donor parent Am3 except QCa.caas.6A that came from the recurrent parent Laizhou953. ILs with both higher positive effect alleles and favorable agronomic traits developed in present study are elite germplasm for wide crossing in wheat. Results from the current study suggest that wheat ancestors can be rich in new sources of crossability genes. 展开更多
关键词 CROSSABILITY Quantitative trait locus synthetic wheat
原文传递
Effect of HMW-GS 6 + 8 and 1.5 + 10 from Synthetic Hexaploid Wheat on Wheat Quality Traits 被引量:10
6
作者 TANG Yong-lu YANG Wu-yun +2 位作者 TIAN Ji-chun LI Jun CHEN Fang 《Agricultural Sciences in China》 CAS CSCD 2008年第10期1161-1171,共11页
To determine the effect of 6 + 8 and 1.5 + 10 HMW-GS of synthetic hexaploid wheat (SHW) on main quality parameters of wheat, a set of recombinant inbred lines (RILs) derived from the cross between a SHW with N,... To determine the effect of 6 + 8 and 1.5 + 10 HMW-GS of synthetic hexaploid wheat (SHW) on main quality parameters of wheat, a set of recombinant inbred lines (RILs) derived from the cross between a SHW with N, 6 + 8, 1.5 + 10 HMW-GS and a cultivar Chuanyu 12-1 (CY 12-1) with 1, 7 + 8, 2 + 12 were planted in three environments in 2005 and 2006 and totally 16 quality parameters were tested for each line. Significant differences in all tested quality parameters but flour yield were observed between the two parents. The mean values of the RILs were intermediate to the parents for grain and protein parameters and some farinograph parameters, flour water absorption (FWA), and farinograph softening (SOF) but beyond parents at dough stability time (DST), breakdown time (BRT), quality number (QN), noodle score (NS), and loaf volume (LOV). All of the quality traits, especially in grain hardness (GH), zeleny sedimentation volume (SED), and most of farinograph parameters had significant difference between the different HMW-GS components. The effects of different alleles of HMW-GS at same locus (Glu-A1 or Glu-B1 or GIu-D1) on the different quality parameters were also different and affected by the other two loci. For most of parameters tested, 6 + 8 was better than 7 + 8 and there was no difference between 1.5 + 10 and 2 + 12. End-use quality was greatly influenced by components of HMW-GS. The components of 1, 6 + 8, 1.5 + 10 had the highest LOV and bread score (BS) values, whereas the components of 1, 7+ 8 and 1.5 + 10 had the highest NS values. Noodle score performed a positive linear relationship with falling number (FN) and its relationships to other quality parameters were affected by environments. Loaf volume had a significant negative relationship to SOF and positive associations with most of quality parameters. It could be concluded that HMW-GS 6+ 8 from SHW had better overall quality characteristics than 7 + 8, whereas the effects of 1.5 + 10 on quality was different in respect to quality parameters and the HMW-GS components. Synthetic hexaploid wheat with subunits 6 + 8 and 1.5 + 10 had the potentials to improve the end-use quality of wheat cultivars. 展开更多
关键词 synthetic hexaploid wheat recombinant inbred lines 6 8 1.5 10 HMW-GS HMW-GS component quality traits
下载PDF
Identification of QTLs for Yield-Related Traits in the Recombinant Inbred Line Population Derived from the Cross Between a Synthetic Hexaploid Wheat-Derived Variety Chuanmai 42 and a Chinese Elite Variety Chuannong 16 被引量:8
7
作者 TANG Yong-lu LI Jun +4 位作者 WU Yuan-qi WEI Hui-ting LI Chao-SU YANG Wu-yun CHEN Fang 《Agricultural Sciences in China》 CAS CSCD 2011年第11期1665-1680,共16页
Synthetic hexaploid wheat (SHW) represents a valuable source of new resistances to a range of biotic and abiotic stresses. A recombinant inbred line (RIL) population with 127 recombinant inbred lines derived from ... Synthetic hexaploid wheat (SHW) represents a valuable source of new resistances to a range of biotic and abiotic stresses. A recombinant inbred line (RIL) population with 127 recombinant inbred lines derived from a SHW-derived variety Chuanmai 42 crossing with a Chinese spring wheat variety Chuannong 16 was used to map QTLs for agronomic traits including grain yield, grains per square meter, thousand-kernel weight, spikes per square meter, grain number per spike, grains weight per spike, and biomass yield. The population was genotyped using 184 simple-sequence repeat (SSR) markers and 34 sequence-related amplified polymorphism (SRAP) markers. Of 76 QTLs (LOD〉2.5) identified, 42 were found to have a positive effect from Chuanmai 42. The QTL QGy.saas-4D.2 associated with grain yield on chromosome 4D was detected in four of the six environments and the combined analysis, and the mean yield, across six environments, of individuals carrying the Chuanmai 42 allele at this locus was 8.9% higher than that of those lines carrying the Chuannong 16 allele. Seven clusters of the yield-coincident QTLs were detected on 1A, 4A, 3B, 5B, 4D, and 7D. 展开更多
关键词 yield-related traits quantitative trait loci Chuanmai 42 synthetic hexaploid wheat
下载PDF
Quantitative trait loci analysis for root traits in synthetic hexaploid wheat under drought stress conditions 被引量:4
8
作者 LIU Rui-xuan WU Fang-kun +8 位作者 YI Xin LIN Yu WANG Zhi-qiang LIU Shi-hang DENG Mei MA Jian WEI Yu-ming ZHENG You-liang LIU Ya-xi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第8期1947-1960,共14页
Synthetic hexaploid wheat(SHW),possesses numerous genes for drought that can help breeding for drought-tolerant wheat varieties.We evaluated 10 root traits at seedling stage in 111 F9 recombinant inbred lines derived ... Synthetic hexaploid wheat(SHW),possesses numerous genes for drought that can help breeding for drought-tolerant wheat varieties.We evaluated 10 root traits at seedling stage in 111 F9 recombinant inbred lines derived from a F2 population of a SHW line(SHW-L1)and a common wheat line,under normal(NC)and polyethylene glycol-simulated drought stress conditions(DC).We mapped quantitative trait loci(QTLs)for root traits using an enriched high-density genetic map containing 120370 single nucleotide polymorphisms(SNPs),733 diversity arrays technology markers(DArT)and 119 simple sequence repeats(SSRs).With four replicates per treatment,we identified 19 QTLs for root traits under NC and DC,and 12 of them could be consistently detected with three or four replicates.Two novel QTLs for root fresh weight and root diameter under NC explained 9 and 15.7%of the phenotypic variation respectively,and six novel QTLs for root fresh weight,the ratio of root water loss,total root surface area,number of root tips,and number of root forks under DC explained 8.5–14%of the phenotypic variation.Here seven of eight novel QTLs could be consistently detected with more than three replicates.Results provide essential information for fine-mapping QTLs related to drought tolerance that will facilitate breeding drought-tolerant wheat cultivars. 展开更多
关键词 synthetic hexaploid wheat quantitative trait loci drought stress root traits
下载PDF
Detection of Genetic Diversity in Synthetic Hexaploid Wheats Using Microsatellite Markers 被引量:2
9
作者 CHEN Guo-yue LI Li-hui 《Agricultural Sciences in China》 CAS CSCD 2007年第12期1403-1410,共8页
Ninety-five synthetic hexaploid wheats (2n = 6x = 42, AABBDD) were analyzed using 45 microsatellite markers to investigate the potential genetic diversity in wheat breeding programs. A total of 326 alleles were dete... Ninety-five synthetic hexaploid wheats (2n = 6x = 42, AABBDD) were analyzed using 45 microsatellite markers to investigate the potential genetic diversity in wheat breeding programs. A total of 326 alleles were detected by these microsatellite primer pairs, with an average of 6.65 alleles per locus. The polymorphic information content (PIC), Simpson index (SI), and genetic similarity (GS) coefficient showed that the D genome is of the highest genetic diversity among the A, B, and D genomes in the synthetic hexaploid wheats. The results also indicated that the synthetic hexaploid wheat is an efficient way to enrich wheat genetic backgrounds, especially to use the genetic variations of the D genome from Aegilops squarrosa for wheat improvement. The UPGMA dendogram, based on a similarity matrix by a simple matching coeff'lcient algorithm, delineated the above accessions into 5 major clusters and was in accordance with the available pedigree information. The results demonstrated the utility of microsatellite markers in detecting DNA polymorphism and estimating genetic diversity. 展开更多
关键词 synthetic hexaploid wheats SSRS genetic diversity
下载PDF
Variations in the quality parameters and gluten proteins in synthetic hexaploid wheats solely expressing the Glu-D1 locus
10
作者 DAI Shou-fen CHEN Hai-xia +5 位作者 LI Hao-yuan YANG Wan-jun ZHAI Zhi LIU Qian-yu LI Jian YAN Ze-hong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第7期1877-1885,共9页
This study evaluated the quality potential of seven synthetic hexaploid wheats(2 n=6 x=42, AABBDD) expressing only allelic variation at Glu-D1 of Aegilops tauschii(SHWSD). Major quality parameters related to dough str... This study evaluated the quality potential of seven synthetic hexaploid wheats(2 n=6 x=42, AABBDD) expressing only allelic variation at Glu-D1 of Aegilops tauschii(SHWSD). Major quality parameters related to dough strength, gluten proteins(including high-molecular-weight glutenin subunits(HMW-GS) and low-molecular-weight glutenin subunits(LMW-GS), gliadins), and their ratios between SHWSD and the weak gluten wheat control Chuannong 16(CN16) were measured in at least three environments(except STD7). The zeleny sedimentation value(ZSV), dough development time(DDT), dough stability time(DST), and farinograph quality number(FQN) of SHWSD were considered stable under different environments, with their respective ranges being 8.00–17.67 mL, 0.57–1.50 min, 0.73–1.80 min, and 9.50–27.00. The ZSV, DDT, DST, and FQN of SHWSD were smaller than those of CN16, suggesting that SHWSD had a weaker dough strength than CN16. Although SHWSD had a lower gluten index than CN16, its wet and dry gluten contents were similar to or even higher than those of CN16 in all environments tested. The protein content of grains(12.81–18.21%) and flours(14.20–20.31%) in SHWSD was higher than that in CN16. The amount of HMW-GS in SHWSD sharply decreased under the expression of fewer HMW-GS genes, and the LMW-GS, gliadins, and total glutenins were simultaneously increased in SHWSD in comparison with CN16. Moreover, SHWSD had higher ratios of LMWGS/glutenin and gliadin/glutenin but a lower ratio of HMW-GS/glutenin than CN16. These results provide necessary information for the utilization of SHWSD in weak-gluten wheat breeding. 展开更多
关键词 synthetic hexaploid wheats(SHWs) Ae.tauschii Glu-D1 weak-gluten wheat quality
下载PDF
Genetic Analysis and Molecular Tagging a Novel Yellow Rust Resistance Gene Derived from Synthetic Hexaploid Wheat Germplasm M08
11
作者 CHEN Guo-yue LI Li-hui 《Agricultural Sciences in China》 CAS CSCD 2008年第3期266-271,共6页
Yellow rust of wheat (caused by Puccinia striiformis Westend. f. sp. tritici Eriks.) has been periodically epidemic and severely damaged wheat production in China. The development of resistant cultivars could be an ... Yellow rust of wheat (caused by Puccinia striiformis Westend. f. sp. tritici Eriks.) has been periodically epidemic and severely damaged wheat production in China. The development of resistant cultivars could be an effective way to reduce yield losses of wheat caused by yellow rust. Rust reaction tests and genetic analysis indicated that M08, the synthetic hexaploid wheat derived from hybridization between Triticum durum (2n = 6X = 28; genome AABB) and Aegilops tauschii (2n = 2X = 14; genome DD), showed resistance to current prevailing yellow rust races at seedling stage, which was controlled by a single dominant gene, designated as YrAm. Bulked segregant analysis was used to identify microsatellite markers linked to gene YrAm in an F2 population derived from cross M08 (resistant) × Jinan 17 (susceptible). Three microsatellite marker loci Xgwm77, Xgwm285, and Xgwml31 located on chromosome 3B were mapped to the YrAm locus. Xgwml31 was the closest marker locus and showed a linkage distance of 7.8 cM to the resistance locus. Thus, it is assumed that YrAm for resistance to yellow rust may be derived from Triticum durum and is located on the long arm of chromosome 3B. 展开更多
关键词 yellow rust resistance gene chromosomal location microsatellite marker synthetic hexaploid wheat Triticum durum
下载PDF
Application of Synthetic Hexaploid Wheat Derived from T.Durum, Ae.taushii in Common Wheat Breeding for FHB Resistance
12
作者 ZHANGJu-mei SUNLian-fa 《Journal of Northeast Agricultural University(English Edition)》 CAS 2002年第2期101-105,共5页
The F 1 and F 4 plants of 'synthetic hexaploid wheat/common wheat'crosses and part of their parents were inoculated with Fusarium graminearum to evaluate FHB resistance.The results showed tht the scab resist... The F 1 and F 4 plants of 'synthetic hexaploid wheat/common wheat'crosses and part of their parents were inoculated with Fusarium graminearum to evaluate FHB resistance.The results showed tht the scab resistance in the F 1 varied with the synthetic wheat accessions used as crossing parents.In the F 4,some resistant head lines were generated from the crosses,although their parents had different scab resistance levels.It indicated that synthetic hexaploid wheat are useful in wheat breeding for scab resistance. 展开更多
关键词 common wheat breeding synthetic hexaploid wheat FHB
下载PDF
Evaluation of Aegilops tauschii for Heading Date and Its Gene Location in a Re-synthesized Hexaploid Wheat 被引量:2
13
作者 XIANG Zhi-guo ZHANG Lian-quan +2 位作者 NING Shun-zong ZHENG You-Liang LIU Deng-cai 《Agricultural Sciences in China》 CAS CSCD 2009年第1期1-7,共7页
The successful worldwide cultivation of hexaploid wheat in a diverse range of environments is because of, in part, breeding and selection for appropriate heading date. To adjust and fine-tune the heading time of hexap... The successful worldwide cultivation of hexaploid wheat in a diverse range of environments is because of, in part, breeding and selection for appropriate heading date. To adjust and fine-tune the heading time of hexaploid wheat to particular geographical regions and specific environment within these, there is an urgent need to evaluate and use alternative alleles for heading time. Aegilops tauschii, the donor species of D-genome of hexaploid wheat, has a wide geographic distribution. The present study revealed a wide variation for heading time among 56 Ae. tauschii accessions. All the accessions with short heading dates belonged to the ssp. tauschii, whereas most of ssp. strangulata accessions showed very long heading date. The heading date was also related to distribution of this species. The monotelosomic and monosomic analysis of a synthetic hexaploid wheat showed that chromosome 2D derived from ssp. tauschii accession AS60 had a major effect on promoting heading time with a reduction of more than 5 days. It is postulated that this Ae. tauschii genotype possess the allele Ppd-D^t1 responsible for the insensitivity to photoperiod. This allele is probably different from Ppd-D1 existing in hexaploid wheat. The new allele Ppd-D^t1 derived from Ae. tauschii might be used as a source for hexaploid wheat breeding on photoperiod response. 展开更多
关键词 genetic diversity monosomic analysis photoperiod response synthetic wheat wheat breeding
下载PDF
Allopolyploidization increases genetic recombination in the ancestral diploid D genome during wheat evolution
14
作者 Hongshen Wan Jun Li +6 位作者 Shengwei Ma Fan Yang Liang Chai Zehou Liu Qin Wang Zongjun Pu Wuyun Yang 《The Crop Journal》 SCIE CSCD 2022年第3期743-753,共11页
Genetic recombination produces new allelic combinations,thereby introducing variation for domestication.Allopolyploidization has increased the evolutionary potential of hexaploid common wheat by conferring the advanta... Genetic recombination produces new allelic combinations,thereby introducing variation for domestication.Allopolyploidization has increased the evolutionary potential of hexaploid common wheat by conferring the advantages of heterosis and gene redundancy,but whether a relationship exists between allopolyploidization and genetic recombination is currently unknown.To study the impact of allopolyploid ization on genetic recombination in the ancestral D genome of wheat,we generated new synthetic hexaploid wheats by crossing tetraploid Triticum turgidum with multiple diploid Aegilops tauschii accessions,with subsequent chromosome doubling,to simulate the evolutionary hexaploidization process.Using the DArT-Seq approach,we determined the genotypes of two new synthetic hexaploid wheats with their parents,F;plants in a diploid population(2 x,D_(1)D_(1)×D_(2)D_(2))and its new synthetic hexaploid wheatderived population(6 x,AABBD_(1)D_(1)×AABBD_(2)D_(2)).About 11%of detected SNP loci spanning the D genome of Ae.tauschii were eliminated after allohexaploidization,and the degree of segregation distortion was increased in their hexaploid offspring from the F_(1) generation.Based on codominant genotypes,the mean genetic interval length and recombination frequency between pairs of adjacent and linked SNPs on D genome of the hexaploid F;population were 2.3 fold greater than those in the diploid F_(2) population,and the recombination frequency of Ae.tauschii was increased by their hexaploidization with T.turgidum.In conclusion,allopolyploidization increases genetic recombination of the ancestral diploid D genome of wheat,and DNA elimination and increased segregation distortion also occur after allopolyploidization.Increased genetic recombination could have produced more new allelic combinations subject to natural or artificial selection,helping wheat to spread rapidly to become a major global crop and thereby accelerating the evolution of wheat via hexaploidization. 展开更多
关键词 synthetic wheat Hexaploidization Diploid D genome Genetic recombination Acceleration of evolution
下载PDF
Necrotic Incompatibility in Crosses of Bread Wheats in Argentina
15
作者 Francisco Javier Di Pane Gilberto Kraan 《Journal of Life Sciences》 2012年第12期1383-1386,共4页
Abstract: Synthetic wheats are the product of the cross between Triticum turgidum L. var. durum and T. tauschii. The 7'. tauschii has shown excellent resistance to diseases, salinity, and drought, However, these syn... Abstract: Synthetic wheats are the product of the cross between Triticum turgidum L. var. durum and T. tauschii. The 7'. tauschii has shown excellent resistance to diseases, salinity, and drought, However, these synthetic wheats are also carriers of genes that produce varying degrees of necrosis, which is expressed as death of tissues in the hybrids (F l) generated from crosses with other bread wheats Necrotic incompatibility is a gradual premature leaf death in certain bread wheat F1 plants and it is caused by the interaction of two genes Nel and Ne2. In this paper 40 hybridizations with T. tauschii in the genetic constitution of some of the two parents made in 2006 and 2007 are presented, and their respective F1 planted at the CEI Barrow (Chacra Experimental de Barrow). The plants that showed necrotic incompatibility had less growth than the normal F1 at tillering. Symptoms appeared at the beginning of tillering, remaining in that state and till jointing but they never headed. Out of the 16 Argentinean commercial cultivars evaluated, seven had the Ne allele in its genetic constitution and therefore showed necrotic incompatibility, whereas nine of them did not have the NE allele and their F 1 developed normally. 展开更多
关键词 Triticum tauschii Triticum turgidum L. var. durum synthetic wheat necrotic incompatibility.
下载PDF
Quantitative Trait Loci Associated with Micronutrient Concentrations in Two Recombinant Inbred Wheat Lines 被引量:6
16
作者 PU Zhi-en YU Ma +8 位作者 HE Qiu-yi CHEN Guo-yue WANG Ji-rui LIU Ya-xi JIANG Qian-tao LI Wei DAI Shou-fen WEI Yu-ming ZHENG You-liang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第11期2322-2329,共8页
Micronutrient malnutrition affects over three billion people worldwide, especially women and children in developing countries. Increasing the bioavailable concentrations of essential elements in the edible portions of... Micronutrient malnutrition affects over three billion people worldwide, especially women and children in developing countries. Increasing the bioavailable concentrations of essential elements in the edible portions of crops is an effective resolution to address this issue. To determine the genetic factors controlling micronutrient concentration in wheat, the quantitative trait locus (QTL) analysis for iron, zinc, copper, manganese, and selenium concentrations in two recombinant inbred line populations was performed. In all, 39 QTLs for ifve micronutrient concentrations were identiifed in this study. Of these, 22 alleles from synthetic wheat SHW-L1 and seven alleles from the progeny line of the synthetic wheat Chuanmai 42 showed an increase in micronutrient concentrations. Five QTLs on chromosomes 2A, 3D, 4D, and 5B found in both the populations showed signiifcant phenotypic variation for 2-3 micronutrient concentrations. Our results might help understand the genetic control of micronutrient concentration and allow the utilization of genetic resources of synthetic hexaploid wheat for improving micronutrient efifciency of cultivated wheat by using molecular marker-assisted selection. 展开更多
关键词 micronutrient concentration synthetic hexaploid wheat QTL
下载PDF
Breaking wheat yield barriers requires integrated efforts in developing countries 被引量:2
17
作者 Saeed Rauf Maria Zaharieva +5 位作者 Marilyn L Warburton ZHANG Ping-zhi Abdullah M AL-Sadi Farghama Khalil Marcin Kozak Sultan A Tariq 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第8期1447-1474,共28页
Most yield progress obtained through the so called "Green Revolution", particularly in the irrigated areas of Asia, has reached a limit, and major resistance genes are quickly overcome by the appearance of new strai... Most yield progress obtained through the so called "Green Revolution", particularly in the irrigated areas of Asia, has reached a limit, and major resistance genes are quickly overcome by the appearance of new strains of disease causing organisms.New plant stresses due to a changing environment are difficult to breed for as quickly as the changes occur.There is consequently a continual need for new research programs and breeding strategies aimed at improving yield potential, abiotic stress tolerance and resistance to new, major pests and diseases.Recent advances in plant breeding encompass novel methods of expanding genetic variability and selecting for recombinants, including the development of synthetic hexaploid, hybrid and transgenic wheats.In addition, the use of molecular approaches such as quantitative trait locus(QTL) and association mapping may increase the possibility of directly selecting positive chromosomal regions linked with natural variation for grain yield and stress resistance.The present article reviews the potential contribution of these new approaches and tools to the improvement of wheat yield in farmer's fields, with a special emphasis on the Asian countries, which are major wheat producers, and contain the highest concentration of resource-poor wheat farmers. 展开更多
关键词 genetic diversity HETEROSIS hybrid wheat synthetic hexaploid wheat yield potential
下载PDF
Integrating the physical and genetic map of bread wheat facilitates the detection of chromosomal rearrangements 被引量:1
18
作者 ZHAO Lai-bin XIE Die +10 位作者 HUANG Lei ZHANG Shu-jie LUO Jiang-tao JIANG Bo NING Shun-zong ZHANG Lian-quan YUAN Zhong-wei WANG Ji-rui ZHENG You-liang LIU Deng-cai HAO Ming 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第9期2333-2342,共10页
The bread wheat genome harbors a high content of repetitive DNA,which is amenable to detection and characterization using fluorescence in situ hybridization(FISH)karyotyping.An integrated genetic map was derived from ... The bread wheat genome harbors a high content of repetitive DNA,which is amenable to detection and characterization using fluorescence in situ hybridization(FISH)karyotyping.An integrated genetic map was derived from a recombinant inbred population bred from a cross between a synthetic hexaploid wheat and a commercial Chinese bread wheat cultivar,based on 28 variable FISH sites and>150000 single nucleotide polymorphism(SNP)loci.The majority(20/28)of the variable FISH sites were physically located within a chromosomal region consistent with the genetic location inferred from that of their co-segregating SNP loci.The eight exceptions reflected the presence of either a translocation(1 R/1 B,1 A/7 A)or a presumptive intra-chromosomal inversion(4 A).For eight out of the nine FISH sites detected on the Chinese Spring(CS)karyotype,there was a good match with the reference genome sequence,indicating that the most recent assembly has dealt well with the problem of placing tandem repeats.The integrated genetic map produced for wheat is informative as to the location of blocks of tandemly repeated DNA and can aid in improving the quality of the genome sequence assembly in regions surrounding these blocks. 展开更多
关键词 TRITICEAE Triticum turgidum repetitive DNA sequences fluorescence in situ hybridization(FISH) wheat genome synthetic hexaploid wheat
下载PDF
Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China 被引量:24
19
作者 Wuyun Yang Dengcai Liu +6 位作者 Jun Li Lianquan Zhang Huiting Wei Xiaorong Hu Youliang Zheng Zhouhu He Yuchun Zou 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2009年第9期539-546,共8页
Synthetic hexaploid wheat (Triticum turgidum x Aegilops tauschii) was created to explore for novel genes from T. turgidum and Ae. tauschii that can be used for common wheat improvement. In the present paper, researc... Synthetic hexaploid wheat (Triticum turgidum x Aegilops tauschii) was created to explore for novel genes from T. turgidum and Ae. tauschii that can be used for common wheat improvement. In the present paper, research advances on the utilization of synthetic hexaploid wheat for wheat genetic improvement in China are reviewed. Over 200 synthetic hexaploid wheat (SHW) accessions from the International Maize and Wheat Improvement Centre (CIMMYT) were introduced into China since 1995. Four cultivars derived from these, Chuanmai 38, Chuanmai 42, Chuanmai 43 and Chuanmai 47, have been released in China. Of these, Chuanmai 42, with large kernels and resistance to stripe rust, had the highest average yield (〉 6 t/ha) among all cultivars over two years in Sichuan provincial yield trials, outyielding the commercial check cultivar Chuanmai 107 by 22,7%. Meanwhile, by either artificial chromosome doubling via colchicine treatment or spontaneous chromosome doubling via a union of unreduced gametes (2n) from T. turgidum-Ae, tauschii hybrids, new SHW lines were produced in China. Mitotic-like meiosis might be the cytological mechanism of spontaneous chromosome doubling. SHW lines with genes for spontaneous chromosome doubling may be useful for producing new SHW-alien amphidiploids and double haploid in wheat genetic improvement. 展开更多
关键词 Aegilops tauschii synthetic hexaploid wheat disease resistance genetic diversity wheat breeding unreduced gametes
原文传递
Making the Bread: Insights from Newly Synthesized AIIohexaploid Wheat 被引量:6
20
作者 Ai-li Li Shuai-feng Geng +2 位作者 Lian-quan Zhang Deng-cai Liu Long Mao 《Molecular Plant》 SCIE CAS CSCD 2015年第6期847-859,共13页
Bread wheat (or common wheat, Triticum aestivum) is an allohexaploid (AABBDD, 2n = 6x = 42) that arose by hybridization between a cultivated tetraploid wheat T. turgidum (AABB, 2n = 4x = 28) and the wild goatgra... Bread wheat (or common wheat, Triticum aestivum) is an allohexaploid (AABBDD, 2n = 6x = 42) that arose by hybridization between a cultivated tetraploid wheat T. turgidum (AABB, 2n = 4x = 28) and the wild goatgrass Aegilops tauschfi (DD, 2n = 2x = 14). Polyploidization provided niches for rigorous genome modification at cytogenetic, genetic, and epigenetic levels, rendering a broader spread than its progenitors. This review summarizes the latest advances in understanding gene regulation mechanisms in newly synthesized allo- hexaploid wheat and possible correlation with polyploid growth vigor and adaptation. Cytogenetic studies reveal persistent association of whole-chromosome aneuploidy with nascent allopolyploids, in contrast to the genetic stability in common wheat. Transcriptome analysis of the euploid wheat shows that small RNAs are driving forces for homoeo-allele expression regulation via genetic and epigenetic mechanisms. The ensuing non-additively expressed genes and those with expression level dominance to the respective pro- genitor may play distinct functions in growth vigor and adaptation in nascent allohexaploid wheat. Further genetic diploidization of allohexaploid wheat is not random. Regional asymmetrical gene distribution, rather than subgenome dominance, is observed in both synthetic and natural allohexaploid wheats. The combinatorial effects of diverged genomes, subsequent selection of specific gene categories, and subgenome-specific traits are essential for the successful establishment of common wheat. 展开更多
关键词 ALLOPOLYPLOIDY synthetic wheat HETEROSIS adaptation expression level dominance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部