The method of determining coal pillar strength equations from databases of stable and failed case histories is more than 50 years old and has been applied in different countries by different researchers in a range of ...The method of determining coal pillar strength equations from databases of stable and failed case histories is more than 50 years old and has been applied in different countries by different researchers in a range of mining situations. While common wisdom sensibly limits the use of the resultant pillar strength equations and methods to design scenarios that are consistent with the founding database, there are a number of examples where failures have occurred as a direct result of applying empirical design methods to coal pillar design problems that are inconsistent with the founding database. This paper explores the reasons why empirically derived coal pillar strength equations tend to be problem-specific and should be considered as providing no more than a pillar strength ‘‘index." These include the non-consideration of overburden horizontal stress within the mine stability problem, an inadequate definition of supercritical overburden behavior as it applies to standing coal pillars, and the non-consideration of overburden displacement and coal pillar strain limits. All of which combine to potentially complicate and confuse the back-analysis of coal pillar strength from failed cases. A modified coal pillar design representation and model are presented based on coal pillars acting to reinforce a horizontally stressed overburden, rather than suspend an otherwise unstable self-loaded overburden or section, the latter having been at the core of historical empirical studies into coal pillar strength and stability.展开更多
The initial motivation of the lifting technique is to solve the H∞control problems. However, the conventional weighted H∞design does not meet the conditions required by lifting, so the result often leads to a misjud...The initial motivation of the lifting technique is to solve the H∞control problems. However, the conventional weighted H∞design does not meet the conditions required by lifting, so the result often leads to a misjudgement of the design. Two conditions required by using the lifting technique are presented based on the basic formulae of the lifting. It is pointed out that only the H∞disturbance attenuation problem with no weighting functions can meet these conditions, hence, the application of the lifting technique is quite limited.展开更多
In the U.S., the current Load and Resistance Factor Design (LRFD) Specifications for highway bridges is a reliability-based formulation that considers failure probabilities of bridge components due to the actions of...In the U.S., the current Load and Resistance Factor Design (LRFD) Specifications for highway bridges is a reliability-based formulation that considers failure probabilities of bridge components due to the actions of typical dead load and frequent vehicular loads. Various extreme load effects, such as earthquake and vessel collision, are on the same reliability-based platform. Since these extreme loads are time variables, combining them with not considered frequent. non- extreme loads is a significant challenge. The number of design limit state equations based on these failure probabilities can be unrealistically large and unnecessary from the view point of practical applications. Based on the opinion of AASHTO State Bridge Engineers, many load combinations are insignificant in their states. This paper describes the formulation of a criterion to include only the necessary load combinations to establish the design limit states. This criterion is established by examining the total failure probabilities for all possible time-invariant and time varying load combinations and breaking them down into partial terms. Then, important load combinations can be readily determined quantitatively,展开更多
Rubber isolation is the most mature control technology in practical application, and is widely used by short rigid buildings. However, many high isolation buildings have been built around the world in recent years, wh...Rubber isolation is the most mature control technology in practical application, and is widely used by short rigid buildings. However, many high isolation buildings have been built around the world in recent years, which do not follow the existing criterions and codes. Many researchers began to research the special problems caused by larger height-width ratio isolation structures. The overturning effect of high height-width ratio structures with rubber bearing is firstly studied. Considering the main factors, such as the height-width ratio of structures, type of site, the designed basic acceleration of ground motion and the decouple factor in horizon, computing experiment is defined with the Uniform Design Method, which is also known as designing isolation structure. The forces of the bearing under edge of structures based on the position of the rubber bearing are calculated. The result indicates that the rubber bearings will lose its functionality under very high tension and compressing force of earthquake motion in horizon and vertical, when the height-width ratio is over a certain value. Thus, based on the calculation result of isolation structures defined in the uniform design method, regression analysis is conducted, and also the rubber edge force regression formula are gotten, which has higher correlation and smaller standard deviation. This formula can be used to roughly calculate whether the pull force occurs at the edge of the building. By the edge bearings of isolation structure minimum force formula, the height-width ratio limited value of the isolation structure is deducted when rubber bearing has minimum force of zero.展开更多
Reinforcement of slopes using soil nailing can effectively improve slope stability, and it has been widely used in upgrading cut slopes. Based on the assumptions of stresses on the slip surface, a new method for analy...Reinforcement of slopes using soil nailing can effectively improve slope stability, and it has been widely used in upgrading cut slopes. Based on the assumptions of stresses on the slip surface, a new method for analyzing the stability of a slope reinforced with soil nails was established in the limit equilibrium theory framework, by considering that slope sliding occurs owing to shear failure of the slip surface, which subjects to Mohr–Coulomb(M–C) strength criterion. Meanwhile, in order to easily analyze the stability of a soil nailed slope in actual engineering and facilitate optimum design of parameters for soil nailing, factor of safety(FOS) contour curve charts were drawn on the basis of the established linear proportional relationship between the spacing of soil nails and slope height, and the length of soil nails and slope height. Then, by analyzing and verifying the results obtained from classic examples, some conclusions can be got as follows: 1) The results obtained from the current method are close to those obtained from the traditional limit equilibrium methods, and the current method can provide a strict solution for the slope FOS as it satisfies all the static equilibrium conditions of a sliding body, thus confirming the feasibility of the current method; 2) The slope FOS contour curve charts can be used not only to reliably analyze the stability of a soil nailed slope, but also to design optimally the parameters of soil nailing for the slope with a certain safety requirement.展开更多
Due to the wide railway network and different characteristics of many earthquake zones in China,considering the running safety performance of trains(RSPT)in the design of high-speed railway bridge structures is very n...Due to the wide railway network and different characteristics of many earthquake zones in China,considering the running safety performance of trains(RSPT)in the design of high-speed railway bridge structures is very necessary.In this study,in order to provide the seismic design and evaluation measure of the bridge structure based on the RSPT,a calculation model of RSPT on bridge under earthquake was established,and the track surface response measure when the derailment coefficient reaches the limit value was calculated by referring to 15 commonly used ground motion(GM)intensity measures.Based on the coefficient of variation of the limit value obtained from multiple GM samples,the optimal measures were selected.Finally,the limit value of bridge seismic response based on RSPT with different train speeds and structural periods was determined.展开更多
A new method is proposed for slope optimization design based on the limit curve method, where the slope is in the limit equilibrium state when the limit slope curve determined by the slip-line field theory and the slo...A new method is proposed for slope optimization design based on the limit curve method, where the slope is in the limit equilibrium state when the limit slope curve determined by the slip-line field theory and the slope intersect at the toe of the slope. Compared with the strength reduction (SR) method, finite element limit analysis method, and the SR method based on Davis algorithm, the new method is suitable for determining the slope stability and limit slope angle (LSA). The optimal slope shape is determined based on a series of slope heights and LSA values, which increases the LSA by 2.45°-11.14° and reduces an invalid overburden amount of rocks by 9.15%, compared with the space mechanics theory. The proposed method gives the objective quantification index of instability criterion, and results in a significant engineering economy.展开更多
This paper studies the problems of H-infinity performance optimization and controller design for continuous-time NCSs with both sensor-to-controller and controller-to-actuator communication constraints (limited commu...This paper studies the problems of H-infinity performance optimization and controller design for continuous-time NCSs with both sensor-to-controller and controller-to-actuator communication constraints (limited communication channels). By taking the derivative character of network-induced delay into full consideration and defining new Lyapunov functions, linear matrix inequalities (LMIs)-based H-infinity performance optimization and controller design are presented for NCSs with limited communication channels. If there do not exist any constraints on the communication channels, the proposed design methods are also applicable. The merit of the proposed methods lies in their Jess conservativeness, which is achieved by avoiding the utilization of bounding inequalities for cross products of vectors. The simulation results illustrate the merit and effectiveness of the proposed H-infinity controller design for NCSs with limited communication channels.展开更多
The reliability of post grouting pile axial resistance was studied by proposing a design method for its probabilistic limit state,which is represented by the partial coefficients of load,end,and side resistance.The hy...The reliability of post grouting pile axial resistance was studied by proposing a design method for its probabilistic limit state,which is represented by the partial coefficients of load,end,and side resistance.The hyperbolic,modified hyperbolic,and polynomial models were employed to predict the ultimate bearing capacity of test piles that were not loaded to damage in field tests.The results were used for the calculation and calibration of the reliability index.The reliability of the probabilistic limit state design method was verified by an engineering case.The results show that the prediction results obtained from the modified hyperbolic model are closest to those obtained through the static load test.The proposed corresponding values of total,side,and end resistance partial coefficients are 1.84,1.66,and 2.73 when the dead and live load partial coefficients are taken as 1.1 and 1.4,respectively.Meanwhile,the corresponding partial coefficients of total,side,and end resistance are 1.70,1.56,and 2.34 when the dead and live load partial coefficients are taken as 1.2 and 1.4,respectively.展开更多
With the continuous increase in vertical depths and horizontal displacements of directional wells,the difficulties of drilling operations continue to increase,and more accurate methods of drilling difficulty evaluatio...With the continuous increase in vertical depths and horizontal displacements of directional wells,the difficulties of drilling operations continue to increase,and more accurate methods of drilling difficulty evaluation are needed.In this paper,a drilling difficulty evaluation method is built by combining drilling limit model and expert evaluation.Firstly,the concept of drilling difficulty index is introduced,and the method to calculate drilling difficulty index is established.Next,the meanings of five drilling difficulty levels are explained and the optimization design method with drilling difficulty as the target is built.At last,the theoretical model is applied to the extended-reach drilling of the Liuhua oilfield in the South China Sea,in which drilling difficulties are evaluated and the relationship between drilling difficulty and development control radius is revealed.The results indicate that extended-reach drilling in the Liuhua oilfield is on the“normal”difficulty level on average,rotary drilling in 8_(1/2)-in.section is the most difficult,and the main constraint conditions are excessive torque and high friction.Through technology upgradation,the drilling difficulties are decreased,the development control radius increases from 6.6 to 11.4 km,and the maximum horizontalto-vertical ratio increases from 5.3 to 8.7.Then,the development wells in marginal oilfields and adjustment wells in old oilfields can be drilled on“normal”difficulty level.Therefore,technology upgradation,especially drilling rig upgradation,is the most important development direction for extended-reach drilling in the South China Sea.展开更多
The composition of a bearing steel was designed for limited hardenability by use of Grossmann's method. A medium frequency induction Process was applied to heat bearings to ensure penetrant heating and suitable so...The composition of a bearing steel was designed for limited hardenability by use of Grossmann's method. A medium frequency induction Process was applied to heat bearings to ensure penetrant heating and suitable solving of carbon and other elements in the matrix. The hardened depth measured from the end quenching test samples and actual bearings matches well with the designed one.展开更多
The elastic-plastic method is often used in designing the inner flat bulkhead plates of submarines, and the upper structure of ships and drilling platforms. Such bulkhead plates can bear the load only once. For the im...The elastic-plastic method is often used in designing the inner flat bulkhead plates of submarines, and the upper structure of ships and drilling platforms. Such bulkhead plates can bear the load only once. For the improvement of the load-carrying capacity or the reduction of the weight of plates, the yield line analytical method is employed in this paper to design the bulkhead plate to improve economy and increase the effiective load. Besides, a further sutdy of this method has been made theoretically and experimentally, and the data of the limited load-carrying capacity of the plate have been obtained. Furthermore, the safety coefficients for such a method are presented, which can be used as reference for related departments and staffs.展开更多
This paper analyzes the basic characters of optimum open-pit limit. According to them, following general rule for designing pit limit is obtained. The incremental stripping ratios is not greater than the break-even st...This paper analyzes the basic characters of optimum open-pit limit. According to them, following general rule for designing pit limit is obtained. The incremental stripping ratios is not greater than the break-even stripping ratios, or the net incremental value is not less than zero. The rule can be used both in traditional and computer methods as direct basis to determine an optimum limit for any kinds of deposit.展开更多
Goal based and limit state design is nowadays a well-established approach in many engineering fields.Ship construction rules started introducing such concepts since early 2000.However,classification societies’rules d...Goal based and limit state design is nowadays a well-established approach in many engineering fields.Ship construction rules started introducing such concepts since early 2000.However,classification societies’rules do not provide hints on how to verify limit states and to determine the structural layout of submerged thin-walled stiffened cylinders,whose most prominent examples are submarines.Rather,they generally offer guidance and prescriptive formulations to assess shell plating and stiffening members.Such marine structures are studied,designed and built up to carry payloads below the sea surface.In the concept-design stage,the maximum operating depth is the governing hull scantling parameter.Main dimensions are determined based on the analysis of operational requirements.This study proposes a practical conceptdesign approach for conceptual submarine design,aimed at obtaining hull structures that maximize the payload capacity in terms of available internal volume by suitably adjusting structural layout and stiffening members’scantling,duly accounting for robustness and construction constraints as well as practical fabrication issues.The proposed scantling process highlights that there is no need of complex algorithms if sound engineering judgment is applied in setting down rationally the hull scantling problem.A systematic approach based on a computer-coded procedure developed on purpose was effectively implemented and satisfactorily applied in design practice.展开更多
As one of the main load-carrying components of cable-stayed bridges,bridge towers are typically required to remain elastic even when subjected to severe ground motions with a 2%-3%probability of exceedance in 50 years...As one of the main load-carrying components of cable-stayed bridges,bridge towers are typically required to remain elastic even when subjected to severe ground motions with a 2%-3%probability of exceedance in 50 years.To fulfill this special requirement imposed by current seismic design codes,reinforcement ratios in the bridge towers have to be kept significantly higher than if limited ductility behavior of the tower is allowed.In addition,since the foundation capacity is closely related to the moment and shear capacities of the bridge tower,a large increase in bridge construction cost for elastically designed cable-stayed bridge is inevitable.To further investigate the possibility of limited ductility bridge tower design strategies,a new 1/20-scale cable-stayed bridge model with H-shaped bridge towers designed according to strong strut-weak tower column design was tested.The shake table experimental results are compared with a previous strong tower column-weak strut designed full bridge model.A comparison of the results show that ductility design with plastic hinges located on tower columns,i.e.,strong strut-weak tower column design,is another effective seismic design strategy that results in only small residual displacement at the top of the tower column,even under very severe earthquake excitations.展开更多
To further exploit the potential of marine composites applications in building ship hulls,offshore structures,and marine equipment and components,design approaches should be improved,facing the challenge of a more com...To further exploit the potential of marine composites applications in building ship hulls,offshore structures,and marine equipment and components,design approaches should be improved,facing the challenge of a more comprehensive and explicit assessment of appropriately defined limit states.The structure ultimate/limit conditions shall be verified in principle within the whole structural domain and throughout the ship service life.What above calls for extended and reliable materials characterization on the one hand and for accurate and wide-ranging procedures in structural analyses.This paper presents an overview of recent industrial developments of marine composites limit states assessments and design approaches,as available in open literature,focusing on pleasure crafts and yachts as well as navy ships and thus showing a starting point to fill the gap in this respect.After a general introduction about composites characterization techniques,current design practice and rule requirements are briefly summarized.Both inter-ply and intra-ply failure modes and corresponding limit states are then presented along with recently proposed assessment approaches.Three-dimensional aspects in failure modes and manufacturing methods have been identified as the main factors influencing marine composite robustness.Literature review highlighted also fire resistance and hybrid joining techniques as significant issues in the use of marine composites.展开更多
Sleeve pattern design of men’ s tailored - suit is one of the most difficult problems of clothing pattern design. Based on the experimental studies of armhole girth, the difference of armhole width and crown height, ...Sleeve pattern design of men’ s tailored - suit is one of the most difficult problems of clothing pattern design. Based on the experimental studies of armhole girth, the difference of armhole width and crown height, crown angle, under sleeve curve’s diagonal line length, crown ease and its distribution rule, this paper mainly deals with the sleeve pattern design of tailored - suit for Chinese men. The influences of these factors are discussed and furthermore, some qualitative, quantifiable conclusions are drawn to design perfect pattern of men’ s tailored - suit sleeve.展开更多
Applying calculation method in alloy design should be an important tendency due to its characters of inexpensive cost, high efficiency and prediction. DOS calculations of AuSn, AsSn and SbSn Sn- based alloys have ...Applying calculation method in alloy design should be an important tendency due to its characters of inexpensive cost, high efficiency and prediction. DOS calculations of AuSn, AsSn and SbSn Sn- based alloys have been investigated by employing DV - Xa method, in which different cluster models were adopted to calculate electron structure.It is proved that some regulations must be taken into ac- count in order to carry out alloy design calculation successfully,which are described in this paper in detail.展开更多
To meet the development trend of multi-bar warp knit-ting machine towards high-speed,advanced technologyand computer control and the requirements of variousproducts with small quantity,there are many researcheson the ...To meet the development trend of multi-bar warp knit-ting machine towards high-speed,advanced technologyand computer control and the requirements of variousproducts with small quantity,there are many researcheson the computer-aided pattern design of multi-barwarp knitted fabrics.In terms of the special propertiesof the computer-aided pattern design of multi-barwarp knitted fabrics,the Object Oriented Program(OOP)programming-Object Windows class Library(OWL)programming is selected.According to thecharacters of the OWL programming,various functionsare defined.Pattern design and technical parameters canbe output,which offers a great convenience for the fac-tory.展开更多
文摘The method of determining coal pillar strength equations from databases of stable and failed case histories is more than 50 years old and has been applied in different countries by different researchers in a range of mining situations. While common wisdom sensibly limits the use of the resultant pillar strength equations and methods to design scenarios that are consistent with the founding database, there are a number of examples where failures have occurred as a direct result of applying empirical design methods to coal pillar design problems that are inconsistent with the founding database. This paper explores the reasons why empirically derived coal pillar strength equations tend to be problem-specific and should be considered as providing no more than a pillar strength ‘‘index." These include the non-consideration of overburden horizontal stress within the mine stability problem, an inadequate definition of supercritical overburden behavior as it applies to standing coal pillars, and the non-consideration of overburden displacement and coal pillar strain limits. All of which combine to potentially complicate and confuse the back-analysis of coal pillar strength from failed cases. A modified coal pillar design representation and model are presented based on coal pillars acting to reinforce a horizontally stressed overburden, rather than suspend an otherwise unstable self-loaded overburden or section, the latter having been at the core of historical empirical studies into coal pillar strength and stability.
基金Supported by the Harbin Engineering University Fund for Basic Projects (heuft06041)
文摘The initial motivation of the lifting technique is to solve the H∞control problems. However, the conventional weighted H∞design does not meet the conditions required by lifting, so the result often leads to a misjudgement of the design. Two conditions required by using the lifting technique are presented based on the basic formulae of the lifting. It is pointed out that only the H∞disturbance attenuation problem with no weighting functions can meet these conditions, hence, the application of the lifting technique is quite limited.
基金Federal Highway Administration at the University at Buffalo under Contract No.DTFH61-08-C-00012
文摘In the U.S., the current Load and Resistance Factor Design (LRFD) Specifications for highway bridges is a reliability-based formulation that considers failure probabilities of bridge components due to the actions of typical dead load and frequent vehicular loads. Various extreme load effects, such as earthquake and vessel collision, are on the same reliability-based platform. Since these extreme loads are time variables, combining them with not considered frequent. non- extreme loads is a significant challenge. The number of design limit state equations based on these failure probabilities can be unrealistically large and unnecessary from the view point of practical applications. Based on the opinion of AASHTO State Bridge Engineers, many load combinations are insignificant in their states. This paper describes the formulation of a criterion to include only the necessary load combinations to establish the design limit states. This criterion is established by examining the total failure probabilities for all possible time-invariant and time varying load combinations and breaking them down into partial terms. Then, important load combinations can be readily determined quantitatively,
文摘Rubber isolation is the most mature control technology in practical application, and is widely used by short rigid buildings. However, many high isolation buildings have been built around the world in recent years, which do not follow the existing criterions and codes. Many researchers began to research the special problems caused by larger height-width ratio isolation structures. The overturning effect of high height-width ratio structures with rubber bearing is firstly studied. Considering the main factors, such as the height-width ratio of structures, type of site, the designed basic acceleration of ground motion and the decouple factor in horizon, computing experiment is defined with the Uniform Design Method, which is also known as designing isolation structure. The forces of the bearing under edge of structures based on the position of the rubber bearing are calculated. The result indicates that the rubber bearings will lose its functionality under very high tension and compressing force of earthquake motion in horizon and vertical, when the height-width ratio is over a certain value. Thus, based on the calculation result of isolation structures defined in the uniform design method, regression analysis is conducted, and also the rubber edge force regression formula are gotten, which has higher correlation and smaller standard deviation. This formula can be used to roughly calculate whether the pull force occurs at the edge of the building. By the edge bearings of isolation structure minimum force formula, the height-width ratio limited value of the isolation structure is deducted when rubber bearing has minimum force of zero.
基金Project(2015M580702)supported by the Postdoctoral Science Foundation of ChinaProject(51608541)supported by the National Natural Science Foundation of ChinaProject(2014122066)supported by the Guizhou Provincial Department of Transportation Foundation,China
文摘Reinforcement of slopes using soil nailing can effectively improve slope stability, and it has been widely used in upgrading cut slopes. Based on the assumptions of stresses on the slip surface, a new method for analyzing the stability of a slope reinforced with soil nails was established in the limit equilibrium theory framework, by considering that slope sliding occurs owing to shear failure of the slip surface, which subjects to Mohr–Coulomb(M–C) strength criterion. Meanwhile, in order to easily analyze the stability of a soil nailed slope in actual engineering and facilitate optimum design of parameters for soil nailing, factor of safety(FOS) contour curve charts were drawn on the basis of the established linear proportional relationship between the spacing of soil nails and slope height, and the length of soil nails and slope height. Then, by analyzing and verifying the results obtained from classic examples, some conclusions can be got as follows: 1) The results obtained from the current method are close to those obtained from the traditional limit equilibrium methods, and the current method can provide a strict solution for the slope FOS as it satisfies all the static equilibrium conditions of a sliding body, thus confirming the feasibility of the current method; 2) The slope FOS contour curve charts can be used not only to reliably analyze the stability of a soil nailed slope, but also to design optimally the parameters of soil nailing for the slope with a certain safety requirement.
基金Projects(U1934207,51778630,11972379)supported by the National Natural Science Foundation of ChinaProject(2020zzts148)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(GJJ200657)supported the Research Project of Jiangxi Provincial Education Department,China。
文摘Due to the wide railway network and different characteristics of many earthquake zones in China,considering the running safety performance of trains(RSPT)in the design of high-speed railway bridge structures is very necessary.In this study,in order to provide the seismic design and evaluation measure of the bridge structure based on the RSPT,a calculation model of RSPT on bridge under earthquake was established,and the track surface response measure when the derailment coefficient reaches the limit value was calculated by referring to 15 commonly used ground motion(GM)intensity measures.Based on the coefficient of variation of the limit value obtained from multiple GM samples,the optimal measures were selected.Finally,the limit value of bridge seismic response based on RSPT with different train speeds and structural periods was determined.
基金Project(JJKH20180450KJ)supported by Education Department of Jilin Province,ChinaProject(20166008)supported by the Science and Technology Bureau of Jilin Province,China
文摘A new method is proposed for slope optimization design based on the limit curve method, where the slope is in the limit equilibrium state when the limit slope curve determined by the slip-line field theory and the slope intersect at the toe of the slope. Compared with the strength reduction (SR) method, finite element limit analysis method, and the SR method based on Davis algorithm, the new method is suitable for determining the slope stability and limit slope angle (LSA). The optimal slope shape is determined based on a series of slope heights and LSA values, which increases the LSA by 2.45°-11.14° and reduces an invalid overburden amount of rocks by 9.15%, compared with the space mechanics theory. The proposed method gives the objective quantification index of instability criterion, and results in a significant engineering economy.
基金supported by the Funds for Creative Research Groups of China(No.60821063)the State Key Program of National Natural Science of China(No.60534010)+3 种基金the National 973 Program of China(No.2009CB320604)the Funds of National Science of China(No.60674021,60804024)the 111 Project(No.B08015)the Funds of PhD program of MOE,China(No.20060145019)
文摘This paper studies the problems of H-infinity performance optimization and controller design for continuous-time NCSs with both sensor-to-controller and controller-to-actuator communication constraints (limited communication channels). By taking the derivative character of network-induced delay into full consideration and defining new Lyapunov functions, linear matrix inequalities (LMIs)-based H-infinity performance optimization and controller design are presented for NCSs with limited communication channels. If there do not exist any constraints on the communication channels, the proposed design methods are also applicable. The merit of the proposed methods lies in their Jess conservativeness, which is achieved by avoiding the utilization of bounding inequalities for cross products of vectors. The simulation results illustrate the merit and effectiveness of the proposed H-infinity controller design for NCSs with limited communication channels.
基金The National Natural Science Foundation of China(No.51878160,52008100,52078128).
文摘The reliability of post grouting pile axial resistance was studied by proposing a design method for its probabilistic limit state,which is represented by the partial coefficients of load,end,and side resistance.The hyperbolic,modified hyperbolic,and polynomial models were employed to predict the ultimate bearing capacity of test piles that were not loaded to damage in field tests.The results were used for the calculation and calibration of the reliability index.The reliability of the probabilistic limit state design method was verified by an engineering case.The results show that the prediction results obtained from the modified hyperbolic model are closest to those obtained through the static load test.The proposed corresponding values of total,side,and end resistance partial coefficients are 1.84,1.66,and 2.73 when the dead and live load partial coefficients are taken as 1.1 and 1.4,respectively.Meanwhile,the corresponding partial coefficients of total,side,and end resistance are 1.70,1.56,and 2.34 when the dead and live load partial coefficients are taken as 1.2 and 1.4,respectively.
基金the financial support from the Natural Science Foundation of China(Grant Nos.51904317 and 51821092)Science Foundation of China University of Petroleum,Beijing(Grant No.ZX20180414)other projects(ZLZX2020-0107-01)
文摘With the continuous increase in vertical depths and horizontal displacements of directional wells,the difficulties of drilling operations continue to increase,and more accurate methods of drilling difficulty evaluation are needed.In this paper,a drilling difficulty evaluation method is built by combining drilling limit model and expert evaluation.Firstly,the concept of drilling difficulty index is introduced,and the method to calculate drilling difficulty index is established.Next,the meanings of five drilling difficulty levels are explained and the optimization design method with drilling difficulty as the target is built.At last,the theoretical model is applied to the extended-reach drilling of the Liuhua oilfield in the South China Sea,in which drilling difficulties are evaluated and the relationship between drilling difficulty and development control radius is revealed.The results indicate that extended-reach drilling in the Liuhua oilfield is on the“normal”difficulty level on average,rotary drilling in 8_(1/2)-in.section is the most difficult,and the main constraint conditions are excessive torque and high friction.Through technology upgradation,the drilling difficulties are decreased,the development control radius increases from 6.6 to 11.4 km,and the maximum horizontalto-vertical ratio increases from 5.3 to 8.7.Then,the development wells in marginal oilfields and adjustment wells in old oilfields can be drilled on“normal”difficulty level.Therefore,technology upgradation,especially drilling rig upgradation,is the most important development direction for extended-reach drilling in the South China Sea.
文摘The composition of a bearing steel was designed for limited hardenability by use of Grossmann's method. A medium frequency induction Process was applied to heat bearings to ensure penetrant heating and suitable solving of carbon and other elements in the matrix. The hardened depth measured from the end quenching test samples and actual bearings matches well with the designed one.
文摘The elastic-plastic method is often used in designing the inner flat bulkhead plates of submarines, and the upper structure of ships and drilling platforms. Such bulkhead plates can bear the load only once. For the improvement of the load-carrying capacity or the reduction of the weight of plates, the yield line analytical method is employed in this paper to design the bulkhead plate to improve economy and increase the effiective load. Besides, a further sutdy of this method has been made theoretically and experimentally, and the data of the limited load-carrying capacity of the plate have been obtained. Furthermore, the safety coefficients for such a method are presented, which can be used as reference for related departments and staffs.
文摘This paper analyzes the basic characters of optimum open-pit limit. According to them, following general rule for designing pit limit is obtained. The incremental stripping ratios is not greater than the break-even stripping ratios, or the net incremental value is not less than zero. The rule can be used both in traditional and computer methods as direct basis to determine an optimum limit for any kinds of deposit.
基金Supported by the Italian Ministry of Defense-Segredifesa,in collaboration with Fincantieri under Grant of the ASAMS(Aspetti specialistici e approccio metodologico per progettazione di sottomarini di ultima generazione)project(2019-2022).
文摘Goal based and limit state design is nowadays a well-established approach in many engineering fields.Ship construction rules started introducing such concepts since early 2000.However,classification societies’rules do not provide hints on how to verify limit states and to determine the structural layout of submerged thin-walled stiffened cylinders,whose most prominent examples are submarines.Rather,they generally offer guidance and prescriptive formulations to assess shell plating and stiffening members.Such marine structures are studied,designed and built up to carry payloads below the sea surface.In the concept-design stage,the maximum operating depth is the governing hull scantling parameter.Main dimensions are determined based on the analysis of operational requirements.This study proposes a practical conceptdesign approach for conceptual submarine design,aimed at obtaining hull structures that maximize the payload capacity in terms of available internal volume by suitably adjusting structural layout and stiffening members’scantling,duly accounting for robustness and construction constraints as well as practical fabrication issues.The proposed scantling process highlights that there is no need of complex algorithms if sound engineering judgment is applied in setting down rationally the hull scantling problem.A systematic approach based on a computer-coded procedure developed on purpose was effectively implemented and satisfactorily applied in design practice.
基金National Key Research and Development Plan,China under Grant No.2017YFC1500702the National Natural Science Foundation of China under Grant No.51478338。
文摘As one of the main load-carrying components of cable-stayed bridges,bridge towers are typically required to remain elastic even when subjected to severe ground motions with a 2%-3%probability of exceedance in 50 years.To fulfill this special requirement imposed by current seismic design codes,reinforcement ratios in the bridge towers have to be kept significantly higher than if limited ductility behavior of the tower is allowed.In addition,since the foundation capacity is closely related to the moment and shear capacities of the bridge tower,a large increase in bridge construction cost for elastically designed cable-stayed bridge is inevitable.To further investigate the possibility of limited ductility bridge tower design strategies,a new 1/20-scale cable-stayed bridge model with H-shaped bridge towers designed according to strong strut-weak tower column design was tested.The shake table experimental results are compared with a previous strong tower column-weak strut designed full bridge model.A comparison of the results show that ductility design with plastic hinges located on tower columns,i.e.,strong strut-weak tower column design,is another effective seismic design strategy that results in only small residual displacement at the top of the tower column,even under very severe earthquake excitations.
文摘To further exploit the potential of marine composites applications in building ship hulls,offshore structures,and marine equipment and components,design approaches should be improved,facing the challenge of a more comprehensive and explicit assessment of appropriately defined limit states.The structure ultimate/limit conditions shall be verified in principle within the whole structural domain and throughout the ship service life.What above calls for extended and reliable materials characterization on the one hand and for accurate and wide-ranging procedures in structural analyses.This paper presents an overview of recent industrial developments of marine composites limit states assessments and design approaches,as available in open literature,focusing on pleasure crafts and yachts as well as navy ships and thus showing a starting point to fill the gap in this respect.After a general introduction about composites characterization techniques,current design practice and rule requirements are briefly summarized.Both inter-ply and intra-ply failure modes and corresponding limit states are then presented along with recently proposed assessment approaches.Three-dimensional aspects in failure modes and manufacturing methods have been identified as the main factors influencing marine composite robustness.Literature review highlighted also fire resistance and hybrid joining techniques as significant issues in the use of marine composites.
基金This work wus supported hy China Textile Universily and the corporatoin foundation
文摘Sleeve pattern design of men’ s tailored - suit is one of the most difficult problems of clothing pattern design. Based on the experimental studies of armhole girth, the difference of armhole width and crown height, crown angle, under sleeve curve’s diagonal line length, crown ease and its distribution rule, this paper mainly deals with the sleeve pattern design of tailored - suit for Chinese men. The influences of these factors are discussed and furthermore, some qualitative, quantifiable conclusions are drawn to design perfect pattern of men’ s tailored - suit sleeve.
文摘Applying calculation method in alloy design should be an important tendency due to its characters of inexpensive cost, high efficiency and prediction. DOS calculations of AuSn, AsSn and SbSn Sn- based alloys have been investigated by employing DV - Xa method, in which different cluster models were adopted to calculate electron structure.It is proved that some regulations must be taken into ac- count in order to carry out alloy design calculation successfully,which are described in this paper in detail.
文摘To meet the development trend of multi-bar warp knit-ting machine towards high-speed,advanced technologyand computer control and the requirements of variousproducts with small quantity,there are many researcheson the computer-aided pattern design of multi-barwarp knitted fabrics.In terms of the special propertiesof the computer-aided pattern design of multi-barwarp knitted fabrics,the Object Oriented Program(OOP)programming-Object Windows class Library(OWL)programming is selected.According to thecharacters of the OWL programming,various functionsare defined.Pattern design and technical parameters canbe output,which offers a great convenience for the fac-tory.