期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
ON INTEGRATION AND ADAPTATION IN COMPLEX SERVICE SYSTEMS 被引量:10
1
作者 James M.TIEN 《Journal of Systems Science and Systems Engineering》 SCIE EI CSCD 2008年第4期385-415,共31页
The services sector employs a large and growing proportion of workers in the industrialized nations, and it is increasingly dependent on information and communication technologies. While the interdependences, similari... The services sector employs a large and growing proportion of workers in the industrialized nations, and it is increasingly dependent on information and communication technologies. While the interdependences, similarities and complementarities of manufacturing and services are significant, there are considerable differences between goods and services, including the shift in focus from mass production to mass customization (whereby a service is produced and delivered in response to a customer's stated or imputed needs). In general, services can be considered to be knowledge-intensive agents or components which work together as providers and consumers to create or co-produce value. Like manufacturing systems, an efficient service system must be an integrated system of systems, leading to greater connectivity and interdependence. Integration must occur over the physical, temporal, organizational and functional dimensions, and must include methods concerned with the component, the management, and the system. Moreover, an effective service system must also be an adaptable system, leading to greater value and responsiveness. Adaptation must occur over the dimensions of monitoring, feedback, cybernetics and learning, and must include methods concerned with space, time, and system. In sum, service systems are indeed complex, especially due to the uncertainties associated with the human-centered aspects of such systems. Moreover, the system complexities can only be dealt with methods that enhance system integration and adaptation. The paper concludes with several insights, including a plea to shift the current misplaced focus on developing a science or discipline for services to further developing a systems engineering approach to services, an approach based on the integration and adaptation of a host of sciences or disciplines (e.g., physics, mathematics, statistics, psychology, sociology, etc.). In fact, what is required is a services-related transdisciplinary - beyond a single disciplinary - ontology or taxonomy as a basis for disciplinary integration and adaptation. 展开更多
关键词 SERVICES service system system components system integration system adaptation system of systems decision informatics real-time decision making
原文传递
Growth,Nitrogen Uptake and Flow in Maize Plants Affected by Root Growth Restriction 被引量:4
2
作者 Liangzheng Xu Junfang Niu +1 位作者 Chunjian Li Fusuo Zhang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2009年第7期689-697,共9页
The objective of the present study was to investigate the influence of a reduced maize root-system size on root growth and nitrogen (N) uptake and flow within plants. Restriction of shoot-borne root growth caused a ... The objective of the present study was to investigate the influence of a reduced maize root-system size on root growth and nitrogen (N) uptake and flow within plants. Restriction of shoot-borne root growth caused a strong decrease in the absorption of root : shoot dry weight ratio and a reduction in shoot growth. On the other hand, compensatory growth and an increased N uptake rate in the remaining roots were observed. Despite the limited long-distance transport pathway in the mesocotyl with restriction of shoot-borne root growth, N cycling within these plants was higher than those in control plants, implying that xylem and phloem flow velocities via the mesocotyl were considerably higher than in plants with an intact root system. The removal of the seminal roots in addition to restricting shoot-borne root development did not affect whole plant growth and N uptake, except for the stronger compensatory growth of the primary roots. Our results suggest that an adequate N supply to maize plant is maintained by compensatory growth of the remaining roots, increased N uptake rate and flow velocities within the xylem and phloem via the mesocotyl, and reduction in the shoot growth rate. 展开更多
关键词 nitrogen flow nitrogen uptake root system components Zea mays
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部