Accurate and efficient online parameter identification and state estimation are crucial for leveraging digital twin simulations to optimize the operation of near-carbon-free nuclear energy systems.In previous studies,...Accurate and efficient online parameter identification and state estimation are crucial for leveraging digital twin simulations to optimize the operation of near-carbon-free nuclear energy systems.In previous studies,we developed a reactor operation digital twin(RODT).However,non-differentiabilities and discontinuities arise when employing machine learning-based surrogate forward models,challenging traditional gradient-based inverse methods and their variants.This study investigated deterministic and metaheuristic algorithms and developed hybrid algorithms to address these issues.An efficient modular RODT software framework that incorporates these methods into its post-evaluation module is presented for comprehensive comparison.The methods were rigorously assessed based on convergence profiles,stability with respect to noise,and computational performance.The numerical results show that the hybrid KNNLHS algorithm excels in real-time online applications,balancing accuracy and efficiency with a prediction error rate of only 1%and processing times of less than 0.1 s.Contrastingly,algorithms such as FSA,DE,and ADE,although slightly slower(approximately 1 s),demonstrated higher accuracy with a 0.3%relative L_2 error,which advances RODT methodologies to harness machine learning and system modeling for improved reactor monitoring,systematic diagnosis of off-normal events,and lifetime management strategies.The developed modular software and novel optimization methods presented offer pathways to realize the full potential of RODT for transforming energy engineering practices.展开更多
The observation error model of the underwater acous-tic positioning system is an important factor to influence the positioning accuracy of the underwater target.For the position inconsistency error caused by consideri...The observation error model of the underwater acous-tic positioning system is an important factor to influence the positioning accuracy of the underwater target.For the position inconsistency error caused by considering the underwater tar-get as a mass point,as well as the observation system error,the traditional error model best estimation trajectory(EMBET)with little observed data and too many parameters can lead to the ill-condition of the parameter model.In this paper,a multi-station fusion system error model based on the optimal polynomial con-straint is constructed,and the corresponding observation sys-tem error identification based on improved spectral clustering is designed.Firstly,the reduced parameter unified modeling for the underwater target position parameters and the system error is achieved through the polynomial optimization.Then a multi-sta-tion non-oriented graph network is established,which can address the problem of the inaccurate identification for the sys-tem errors.Moreover,the similarity matrix of the spectral cluster-ing is improved,and the iterative identification for the system errors based on the improved spectral clustering is proposed.Finally,the comprehensive measured data of long baseline lake test and sea test show that the proposed method can accu-rately identify the system errors,and moreover can improve the positioning accuracy for the underwater target positioning.展开更多
The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible ...The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems.展开更多
A dominant source of vibration in geared-rotor systems is the gear mesh fault parameters.They include the asymmetric transmission error(TE),phases of TE,the gear mesh stiffness,the gear mesh damping,and the gear runou...A dominant source of vibration in geared-rotor systems is the gear mesh fault parameters.They include the asymmetric transmission error(TE),phases of TE,the gear mesh stiffness,the gear mesh damping,and the gear runouts.The present work deals with the experimental identification of the aforementioned parameters.A mathematical model of a geared-rotor system has been developed using Lagrangian dynamics.Equations of motion are transformed into the frequency domain using the full-spectrum response analysis.These transformed equations are used to develop an identification algorithm(IA)based on least-squares fit to estimate the TE and gear mesh dynamic parameters.The system IA is initially verified using numerical simulations.The robustness of the algorithm is checked by introducing white Gaussian noise in the simulated responses.A geared-rotor experimental rig was developed and used to measure responses at gear locations in two orthogonal directions.Measured responses are transformed in the frequency domain using the full-spectrum analysis and used in the present novel IA to identify the gear parameters.The identified parameters are validated by comparing the numerically generated full-spectrum response using experimentally estimated parameters and that from the experimental rig.展开更多
In a recent case report in the World Journal of Clinical Cases,emphasized the crucial role of rapidly and accurately identifying pathogens to optimize patient treatment outcomes.Laboratory-on-a-chip(LOC)technology has...In a recent case report in the World Journal of Clinical Cases,emphasized the crucial role of rapidly and accurately identifying pathogens to optimize patient treatment outcomes.Laboratory-on-a-chip(LOC)technology has emerged as a transformative tool in health care,offering rapid,sensitive,and specific identification of microorganisms.This editorial provides a comprehensive overview of LOC technology,highlighting its principles,advantages,applications,challenges,and future directions.Success studies from the field have demonstrated the practical benefits of LOC devices in clinical diagnostics,epidemiology,and food safety.Comparative studies have underscored the superiority of LOC technology over traditional methods,showcasing improvements in speed,accuracy,and portability.The future integration of LOC with biosensors,artificial intelligence,and data analytics promises further innovation and expansion.This call to action emphasizes the importance of continued research,investment,and adoption to realize the full potential of LOC technology in improving healthcare outcomes worldwide.展开更多
Distribution feeders carry and supply power to industrial,commercial and residential loads from the point where sub-transmission(33 kV level)ends after stepping down to suitable voltages,such as 11 kV and further down...Distribution feeders carry and supply power to industrial,commercial and residential loads from the point where sub-transmission(33 kV level)ends after stepping down to suitable voltages,such as 11 kV and further down to 400/230 V.In recent times,high impedance(Hi-Z)faults on distribution systems are creating unique challenges to utilities both from operational and safety perspectives.Most of these Hi-Z faults occur at dis-tribution voltages of 15 kV or below,with the problem being worse at lower voltages.Hi-Z fault detection technologies emerged and were developed and incorporated on embedded platforms,such as relays,reclosers and sensors,which protect and monitor distribution systems.Although these technologies can detect Hi-Z fault on feeders,most of them cannot identify the exact location of the fault.Specifically,there is no solution available in literature for detecting Hi-Z fault location on low voltage(LV)circuits like 3-phase 4-wire 400 V distribution network.In this paper,we introduce a novel and a unique algorithm to identify the location of Hi-Z faults using proposed smart metres IoT data-based distribution system load flow and digital twin model representation of the network.Furthermore,a case study on the standard 33 bus LV system clearly depicts the func-tionality of the proposed algorithm.展开更多
The state-space representation of linear time-invariant (LTI) fractional order systems is introduced, and a proof of their stability theory is also given. Then an efficient identification algorithm is proposed for tho...The state-space representation of linear time-invariant (LTI) fractional order systems is introduced, and a proof of their stability theory is also given. Then an efficient identification algorithm is proposed for those fractional order systems. The basic idea of the algorithm is to compute fractional derivatives and the filter simultaneously, i.e., the filtered fractional derivatives can be obtained by computing them in one step, and then system identification can be fulfilled by the least square method. The instrumental variable method is also used in the identification of fractional order systems. In this way, even if there is colored noise in the systems, the unbiased estimation of the parameters can still be obtained. Finally an example of identifying a viscoelastic system is given to show the effectiveness of the aforementioned method.展开更多
A novel adaptive support vector regression neural network (SVR-NN) is proposed, which combines respectively merits of support vector machines and a neural network. First, a support vector regression approach is appl...A novel adaptive support vector regression neural network (SVR-NN) is proposed, which combines respectively merits of support vector machines and a neural network. First, a support vector regression approach is applied to determine the initial structure and initial weights of the SVR-NN so that the network architecture is easily determined and the hidden nodes can adaptively be constructed based on support vectors. Furthermore, an annealing robust learning algorithm is presented to adjust these hidden node parameters as well as the weights of the SVR-NN. To test the validity of the proposed method, it is demonstrated that the adaptive SVR-NN can be used effectively for the identification of nonlinear dynamic systems. Simulation results show that the identification schemes based on the SVR-NN give considerably better performance and show faster learning in comparison to the previous neural network method.展开更多
Two new methods, the generalized Levy method and the weighted iteration method, are presented for identification of non-integer order systems. The first method generalizes the Levy identification method from the integ...Two new methods, the generalized Levy method and the weighted iteration method, are presented for identification of non-integer order systems. The first method generalizes the Levy identification method from the integer order systems to the non-integer order systems. Then, the weighted iteration method is presented to overcome the shortcomings of the first method. Results show that the proposed methods have better performance compared with the integer order identification method. For the non-integer order systems, the proposed methods have the better fitting for the system frequency response. For the integer order system, if commensurate order scanning is applied, the proposed methods can also achieve the best integer order model which fits the system frequency response. At the same time, the proposed algorithms are more stable.展开更多
A time frequency de-noising method is presented in the frequency response function (FRF) preprocessing based on the continuous wavelet transform. Morlet wavelet is employed to construct a filter bank to reduce the n...A time frequency de-noising method is presented in the frequency response function (FRF) preprocessing based on the continuous wavelet transform. Morlet wavelet is employed to construct a filter bank to reduce the noise. The filter bank is a finite impulse response (FIR) linear phase filter thus maintaining phase consistency. A modified Morlet base function is proposed to meet the time frequency resolution by using transient excitation. Numerical simulation is conducted using a Group for Aeronautical Research and Technology in Europe (GARTEUR) aircraft model excited by the transient input. The white noise is added to the simulated data. Results show that the accuracy of the system identification is improved. The estimated error of the mode damping is decreased by 30% compared with that obtained from the noise-corrupted signal.展开更多
In light of the high nonlinearity of LuGre friction model, a novel method based on ant colony algorithm(ACA) for identifying the friction parameters of flight simulation servo system is proposed. ACA is a parallelized...In light of the high nonlinearity of LuGre friction model, a novel method based on ant colony algorithm(ACA) for identifying the friction parameters of flight simulation servo system is proposed. ACA is a parallelized bionic optimization algorithm inspired from the behavior of real ants, and a kind of positive feedback mechanism is adopted in ACA. On the basis of brief introduction of LuGre friction model, a method for identifying the static LuGre friction parameters and the dynamic LuGre friction parameters using ACA is derived. Finally, this new friction parameter identification scheme is applied to a electric-driven flight simulation servo system with high precision. Simulation and application results verify the feasibility and the effectiveness of the scheme. It provides a new way to identify the friction parameters of LuGre model.展开更多
An output-only modal identification method by a combination use of the peak-picking method and the cross spectrum methods are presented. Meanwhile, a novel mode shape optimum method of the deck is proposed. The method...An output-only modal identification method by a combination use of the peak-picking method and the cross spectrum methods are presented. Meanwhile, a novel mode shape optimum method of the deck is proposed. The methods are applied to the operational modal identification system of the Runyang Suspension Bridge, which can be used to obtain the modal parameters of the bridge from out-only data sets collected by its structural health monitoring system (SHMS). As an example, the vibration response data of the deck, cable and tower recorded during typhoon Matsa excitation are used to illustrate the program application. Some of the modal frequencies observed from deck vibration responses are also found in the vibration responses of the cable and the tower. The results show that some modal shapes of the deck are strongly coupled with the cable and the tower. By comparing the identification results from the operational modal system with those from field measurements, a good agreement between them is achieved, but some modal frequencies identified from the operational modal identification system (OMIS), such as L1 and L2, obviously decrease compared with those from the field measurements.展开更多
Aim To study the identification and control of nonlinear systems using neural networks. Methods A new type of neural network in which the dynamical error feedback is used to modify the inputs of the network was empl...Aim To study the identification and control of nonlinear systems using neural networks. Methods A new type of neural network in which the dynamical error feedback is used to modify the inputs of the network was employed to reduce the inherent network approximation error. Results A new identification model constructed by the proposed network and stable filters was derived for continuous time nonlinear systems, and a stable adaptive control scheme based on the proposed networks was developed. Conclusion Theory and simulation results show that the modified neural network is feasible to control a class of nonlinear systems.展开更多
To analyze a multibody system composed of non-uniform beam and spring-mass subsystems, the model discretization is carried on by utilizing the finite element method(FEM), the dynamic model of non-uniform beam is dev...To analyze a multibody system composed of non-uniform beam and spring-mass subsystems, the model discretization is carried on by utilizing the finite element method(FEM), the dynamic model of non-uniform beam is developed by using the transfer matrix method of multibody system(MS-TMM), the transfer matrix of non-u- niform beam is derived, and the natural frequencies are computed. Compared with the numerical assembly method (NAM), the results by MS-TMM have good agreement with the results by FEM, and are better than the results by NAM. When using the high precision method, the global dynamic equations of the complex multibody system are not needed and the orders of involved system matrices are decreased greatly. For the investigation on the re- verse problem of the physical parameter identification of multibody system, MS-TMM and the optimization tech- nology based on genetic algorithms(GAs) are combined and extended. The identification problem is exchanged for an optimization problem, and it is formulated as a global minimum solution of the objective function with respect to natural frequencies of multibody system. At last, the numerical example of non-uniform beam with attach- ments is discussed, and the identification results indicate the feasibility and the effectivity of the proposed aop- proach.展开更多
[ Objective] The pathogen of a new disease found in floating seedlings of tobacco was isolated and identified to provide the basis for the control of the disease. [ Method] The pathogenicity of the isolated strain was...[ Objective] The pathogen of a new disease found in floating seedlings of tobacco was isolated and identified to provide the basis for the control of the disease. [ Method] The pathogenicity of the isolated strain was determined according to Koch's rules, and the pathogen was identified through Biolog system, 16S rDNA sequence analysis and physiological and biochemical methods. [ Result] Through Koch's test, the isolated 3 -3 strain was verified to be the pathogen causing floating seedling disease, which was consistent with the characteristics of Pectobacterium carotovo- rum subsp. Carotovorum through Biolog determination and the other physiological and biochemical methods. 16S rDNA sequence analysis showed that 3 -3 strain had the highest similarity with P. carotovorum subsp. Carotovorum strains Kun28213 (accession number GU936996), reaching 99. 9%. [Conclusion] Base on the identification results of several methods, the pathogen causing floating seedling disease was P. carotovorum subsp. Carotovorum, and the disease was first reported in China. According to the English name of the disease, the disease was called as tobacco blackleg disease.展开更多
Gait event detection is important for diagnosis and evaluation. This is a challenging endeavor due to subjectivity, high amount of data, among other problems. ANFIS (Artificial Neural Fuzzy Inference Systems), ARX ...Gait event detection is important for diagnosis and evaluation. This is a challenging endeavor due to subjectivity, high amount of data, among other problems. ANFIS (Artificial Neural Fuzzy Inference Systems), ARX (Autoregressive Models with Exogenous Variables), OE (Output Error models), NARX (Nonlinear Autoregressive Models with Exogenous Variables) and models based on NN (neural networks) were developed in order to detect gait events without the problems mentioned. The objective was to compare developed models' performance and determinate the most suitable model for gait events detection. Knee joint angle, heel foot switch and toe foot switch during normal walking in a treadmill were collected from a healthy volunteer. Gait events were classified by three experts in human motion. Experts' mean classification was obtained and all models were trained and tested with the collected data and experts' mean classification. Fit percentage was obtained to evaluate models performance. Fit percentages were: ANFIS: 79.49%, ARX: 68.8%, OE: 71.39%, NARX: 88.59%, NNARX: 67.66%, NNRARX: 68.25% and NNARMAX: 54.71%. NARX had the best performance for gait events classification. For ARX and OE, previous filtering is needed. NN's models showed the best performance for high frequency components, ANFIS and NARX were able to integrate criteria from three experts for gait analysis. NARX and ANFIS are suitable for gait event identification. Test with additional subjects is needed.展开更多
Adaptive truss structures are a new kind of structures with integrated active members,whose dynamic characteristies can be beneficially modified to meet mission requirements.Active members containing actuating and sen...Adaptive truss structures are a new kind of structures with integrated active members,whose dynamic characteristies can be beneficially modified to meet mission requirements.Active members containing actuating and sensing units are the major components of adaptive truss structures.Modeling of adaptive truss structures is a key step to analyze the structural dynamic characteristics.A new experimental modal analysis approach,in which active members are used as excitatiDn sources for modal test,has been proposed in this paper.The excitation forces generated by the active members, which are different from the excitation forces exerted on structures in the conventional modal test,are internal forces for the truss structures.The relation between internal excitation forces and external forces is revealed such that the traditional identification method can be adopted to obtain modal parameters of adaptive structures.Placement problem of the active member in adaptive truss structures is also discussed in this work. Modal test and analysis are conducted with a planar adaptive truss structure by using piezoelectric active members in order to verify the feasibility and effectiveness of the proposed method.展开更多
Interaction between a parasite and its host could lead to a co-evolutionary arms race. Cuckoo-host system is among the most studied of all brood parasite systems, but the cuckoos of Asia, on the other hand, are much l...Interaction between a parasite and its host could lead to a co-evolutionary arms race. Cuckoo-host system is among the most studied of all brood parasite systems, but the cuckoos of Asia, on the other hand, are much less well known. China has the most abundant cuckoo species in Asia. Many of these co-occur in sympatric areas, posing a potential risk of mis-identification of cuckoo nestlings, especially in Cuculus species. In this study we have provided a practical criterion to identify cuckoo nestlings species in the field and performed molecular phylogeny to confirm our empirical results. These results indicate that two distinct characteristics of cuckoo nestlings, i.e., the gape color pattern and feather traits can be considered as reliable species identification. To our knowledge, this is the first report for species identification of Cuculus nestlings through molecular analysis.展开更多
Aim The RFB (radial hats function) netal network was studied for the model indentificaiton of an ozonation/BAC system. Methods The optimal ozone's dosage and the remain time in carbon tower were analyzed to build...Aim The RFB (radial hats function) netal network was studied for the model indentificaiton of an ozonation/BAC system. Methods The optimal ozone's dosage and the remain time in carbon tower were analyzed to build the neural network model by which the expected outflow CODM can be acquired under the inflow CODM condition. Results The improved self-organized learning algorithm can assign the centers into appropriate places , and the RBF network's outputs at the sample points fit the experimental data very well. Conclusion The model of ozonation /BAC system based on the RBF network am describe the relationshipamong various factors correctly, a new prouding approach tO the wate purification process is provided.展开更多
Based on support vector machines, three modeling methods, i.e., white-box modeling, grey-box modeling and black-box modeling of ship manoeuvring motion in 4 degrees of freedom are investigated. With the whole-ship mat...Based on support vector machines, three modeling methods, i.e., white-box modeling, grey-box modeling and black-box modeling of ship manoeuvring motion in 4 degrees of freedom are investigated. With the whole-ship mathematical model for ship manoeuvring motion, in which the hydrodynamic coefficients are obtained from roll planar motion mechanism test, some zigzag tests and turning circle manoeuvres are simulated. In the white-box modeling and grey-box modeling, the training data taken every 5 s from the simulated 20°/20° zigzag test are used, while in the black-box modeling, the training data taken every 5 s from the simulated 15°/15°, 20°/20° zigzag tests and 15°, 25° turning manoeuvres are used; and the trained support vector machines are used to predict the whole 20°/20° zigzag test. Comparisons between the simulated and predicted 20°/20° zigzag tests show good predictive ability of the proposed methods. Besides, all mathematical models obtained by the proposed modeling methods are used to predict the 10°/10° zigzag test and 35° turning circle manoeuvre, and the predicted results are compared with those of simulation tests to demonstrate the good generalization performance of the mathematical models. Finally, the proposed modeling methods are analyzed and compared with each other in aspects of application conditions, prediction accuracy and computation speed. The appropriate modeling method can be chosen according to the intended use of the mathematical models and the available data needed for system identification.展开更多
基金supported by the Natural Science Foundation of Shanghai(No.23ZR1429300)Innovation Funds of CNNC(Lingchuang Fund,Contract No.CNNC-LCKY-202234)the Project of the Nuclear Power Technology Innovation Center of Science Technology and Industry(No.HDLCXZX-2023-HD-039-02)。
文摘Accurate and efficient online parameter identification and state estimation are crucial for leveraging digital twin simulations to optimize the operation of near-carbon-free nuclear energy systems.In previous studies,we developed a reactor operation digital twin(RODT).However,non-differentiabilities and discontinuities arise when employing machine learning-based surrogate forward models,challenging traditional gradient-based inverse methods and their variants.This study investigated deterministic and metaheuristic algorithms and developed hybrid algorithms to address these issues.An efficient modular RODT software framework that incorporates these methods into its post-evaluation module is presented for comprehensive comparison.The methods were rigorously assessed based on convergence profiles,stability with respect to noise,and computational performance.The numerical results show that the hybrid KNNLHS algorithm excels in real-time online applications,balancing accuracy and efficiency with a prediction error rate of only 1%and processing times of less than 0.1 s.Contrastingly,algorithms such as FSA,DE,and ADE,although slightly slower(approximately 1 s),demonstrated higher accuracy with a 0.3%relative L_2 error,which advances RODT methodologies to harness machine learning and system modeling for improved reactor monitoring,systematic diagnosis of off-normal events,and lifetime management strategies.The developed modular software and novel optimization methods presented offer pathways to realize the full potential of RODT for transforming energy engineering practices.
基金This work was supported by the National Natural Science Foundation of China(61903086,61903366,62001115)the Natural Science Foundation of Hunan Province(2019JJ50745,2020JJ4280,2021JJ40133)the Fundamentals and Basic of Applications Research Foundation of Guangdong Province(2019A1515110136).
文摘The observation error model of the underwater acous-tic positioning system is an important factor to influence the positioning accuracy of the underwater target.For the position inconsistency error caused by considering the underwater tar-get as a mass point,as well as the observation system error,the traditional error model best estimation trajectory(EMBET)with little observed data and too many parameters can lead to the ill-condition of the parameter model.In this paper,a multi-station fusion system error model based on the optimal polynomial con-straint is constructed,and the corresponding observation sys-tem error identification based on improved spectral clustering is designed.Firstly,the reduced parameter unified modeling for the underwater target position parameters and the system error is achieved through the polynomial optimization.Then a multi-sta-tion non-oriented graph network is established,which can address the problem of the inaccurate identification for the sys-tem errors.Moreover,the similarity matrix of the spectral cluster-ing is improved,and the iterative identification for the system errors based on the improved spectral clustering is proposed.Finally,the comprehensive measured data of long baseline lake test and sea test show that the proposed method can accu-rately identify the system errors,and moreover can improve the positioning accuracy for the underwater target positioning.
文摘The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems.
文摘A dominant source of vibration in geared-rotor systems is the gear mesh fault parameters.They include the asymmetric transmission error(TE),phases of TE,the gear mesh stiffness,the gear mesh damping,and the gear runouts.The present work deals with the experimental identification of the aforementioned parameters.A mathematical model of a geared-rotor system has been developed using Lagrangian dynamics.Equations of motion are transformed into the frequency domain using the full-spectrum response analysis.These transformed equations are used to develop an identification algorithm(IA)based on least-squares fit to estimate the TE and gear mesh dynamic parameters.The system IA is initially verified using numerical simulations.The robustness of the algorithm is checked by introducing white Gaussian noise in the simulated responses.A geared-rotor experimental rig was developed and used to measure responses at gear locations in two orthogonal directions.Measured responses are transformed in the frequency domain using the full-spectrum analysis and used in the present novel IA to identify the gear parameters.The identified parameters are validated by comparing the numerically generated full-spectrum response using experimentally estimated parameters and that from the experimental rig.
文摘In a recent case report in the World Journal of Clinical Cases,emphasized the crucial role of rapidly and accurately identifying pathogens to optimize patient treatment outcomes.Laboratory-on-a-chip(LOC)technology has emerged as a transformative tool in health care,offering rapid,sensitive,and specific identification of microorganisms.This editorial provides a comprehensive overview of LOC technology,highlighting its principles,advantages,applications,challenges,and future directions.Success studies from the field have demonstrated the practical benefits of LOC devices in clinical diagnostics,epidemiology,and food safety.Comparative studies have underscored the superiority of LOC technology over traditional methods,showcasing improvements in speed,accuracy,and portability.The future integration of LOC with biosensors,artificial intelligence,and data analytics promises further innovation and expansion.This call to action emphasizes the importance of continued research,investment,and adoption to realize the full potential of LOC technology in improving healthcare outcomes worldwide.
文摘Distribution feeders carry and supply power to industrial,commercial and residential loads from the point where sub-transmission(33 kV level)ends after stepping down to suitable voltages,such as 11 kV and further down to 400/230 V.In recent times,high impedance(Hi-Z)faults on distribution systems are creating unique challenges to utilities both from operational and safety perspectives.Most of these Hi-Z faults occur at dis-tribution voltages of 15 kV or below,with the problem being worse at lower voltages.Hi-Z fault detection technologies emerged and were developed and incorporated on embedded platforms,such as relays,reclosers and sensors,which protect and monitor distribution systems.Although these technologies can detect Hi-Z fault on feeders,most of them cannot identify the exact location of the fault.Specifically,there is no solution available in literature for detecting Hi-Z fault location on low voltage(LV)circuits like 3-phase 4-wire 400 V distribution network.In this paper,we introduce a novel and a unique algorithm to identify the location of Hi-Z faults using proposed smart metres IoT data-based distribution system load flow and digital twin model representation of the network.Furthermore,a case study on the standard 33 bus LV system clearly depicts the func-tionality of the proposed algorithm.
文摘The state-space representation of linear time-invariant (LTI) fractional order systems is introduced, and a proof of their stability theory is also given. Then an efficient identification algorithm is proposed for those fractional order systems. The basic idea of the algorithm is to compute fractional derivatives and the filter simultaneously, i.e., the filtered fractional derivatives can be obtained by computing them in one step, and then system identification can be fulfilled by the least square method. The instrumental variable method is also used in the identification of fractional order systems. In this way, even if there is colored noise in the systems, the unbiased estimation of the parameters can still be obtained. Finally an example of identifying a viscoelastic system is given to show the effectiveness of the aforementioned method.
文摘A novel adaptive support vector regression neural network (SVR-NN) is proposed, which combines respectively merits of support vector machines and a neural network. First, a support vector regression approach is applied to determine the initial structure and initial weights of the SVR-NN so that the network architecture is easily determined and the hidden nodes can adaptively be constructed based on support vectors. Furthermore, an annealing robust learning algorithm is presented to adjust these hidden node parameters as well as the weights of the SVR-NN. To test the validity of the proposed method, it is demonstrated that the adaptive SVR-NN can be used effectively for the identification of nonlinear dynamic systems. Simulation results show that the identification schemes based on the SVR-NN give considerably better performance and show faster learning in comparison to the previous neural network method.
文摘Two new methods, the generalized Levy method and the weighted iteration method, are presented for identification of non-integer order systems. The first method generalizes the Levy identification method from the integer order systems to the non-integer order systems. Then, the weighted iteration method is presented to overcome the shortcomings of the first method. Results show that the proposed methods have better performance compared with the integer order identification method. For the non-integer order systems, the proposed methods have the better fitting for the system frequency response. For the integer order system, if commensurate order scanning is applied, the proposed methods can also achieve the best integer order model which fits the system frequency response. At the same time, the proposed algorithms are more stable.
文摘A time frequency de-noising method is presented in the frequency response function (FRF) preprocessing based on the continuous wavelet transform. Morlet wavelet is employed to construct a filter bank to reduce the noise. The filter bank is a finite impulse response (FIR) linear phase filter thus maintaining phase consistency. A modified Morlet base function is proposed to meet the time frequency resolution by using transient excitation. Numerical simulation is conducted using a Group for Aeronautical Research and Technology in Europe (GARTEUR) aircraft model excited by the transient input. The white noise is added to the simulated data. Results show that the accuracy of the system identification is improved. The estimated error of the mode damping is decreased by 30% compared with that obtained from the noise-corrupted signal.
文摘In light of the high nonlinearity of LuGre friction model, a novel method based on ant colony algorithm(ACA) for identifying the friction parameters of flight simulation servo system is proposed. ACA is a parallelized bionic optimization algorithm inspired from the behavior of real ants, and a kind of positive feedback mechanism is adopted in ACA. On the basis of brief introduction of LuGre friction model, a method for identifying the static LuGre friction parameters and the dynamic LuGre friction parameters using ACA is derived. Finally, this new friction parameter identification scheme is applied to a electric-driven flight simulation servo system with high precision. Simulation and application results verify the feasibility and the effectiveness of the scheme. It provides a new way to identify the friction parameters of LuGre model.
基金The National High Technology Research and Development Program of China(863Program)(No.2006AA04Z416)
文摘An output-only modal identification method by a combination use of the peak-picking method and the cross spectrum methods are presented. Meanwhile, a novel mode shape optimum method of the deck is proposed. The methods are applied to the operational modal identification system of the Runyang Suspension Bridge, which can be used to obtain the modal parameters of the bridge from out-only data sets collected by its structural health monitoring system (SHMS). As an example, the vibration response data of the deck, cable and tower recorded during typhoon Matsa excitation are used to illustrate the program application. Some of the modal frequencies observed from deck vibration responses are also found in the vibration responses of the cable and the tower. The results show that some modal shapes of the deck are strongly coupled with the cable and the tower. By comparing the identification results from the operational modal system with those from field measurements, a good agreement between them is achieved, but some modal frequencies identified from the operational modal identification system (OMIS), such as L1 and L2, obviously decrease compared with those from the field measurements.
文摘Aim To study the identification and control of nonlinear systems using neural networks. Methods A new type of neural network in which the dynamical error feedback is used to modify the inputs of the network was employed to reduce the inherent network approximation error. Results A new identification model constructed by the proposed network and stable filters was derived for continuous time nonlinear systems, and a stable adaptive control scheme based on the proposed networks was developed. Conclusion Theory and simulation results show that the modified neural network is feasible to control a class of nonlinear systems.
基金Supported by the National Natural Science Foundation of China(10902051)the Natural Science Foundation of Jiangsu Province(BK2008046)~~
文摘To analyze a multibody system composed of non-uniform beam and spring-mass subsystems, the model discretization is carried on by utilizing the finite element method(FEM), the dynamic model of non-uniform beam is developed by using the transfer matrix method of multibody system(MS-TMM), the transfer matrix of non-u- niform beam is derived, and the natural frequencies are computed. Compared with the numerical assembly method (NAM), the results by MS-TMM have good agreement with the results by FEM, and are better than the results by NAM. When using the high precision method, the global dynamic equations of the complex multibody system are not needed and the orders of involved system matrices are decreased greatly. For the investigation on the re- verse problem of the physical parameter identification of multibody system, MS-TMM and the optimization tech- nology based on genetic algorithms(GAs) are combined and extended. The identification problem is exchanged for an optimization problem, and it is formulated as a global minimum solution of the objective function with respect to natural frequencies of multibody system. At last, the numerical example of non-uniform beam with attach- ments is discussed, and the identification results indicate the feasibility and the effectivity of the proposed aop- proach.
基金Supported by Tobacco Company Projects in Yunnan Province (07A08)~~
文摘[ Objective] The pathogen of a new disease found in floating seedlings of tobacco was isolated and identified to provide the basis for the control of the disease. [ Method] The pathogenicity of the isolated strain was determined according to Koch's rules, and the pathogen was identified through Biolog system, 16S rDNA sequence analysis and physiological and biochemical methods. [ Result] Through Koch's test, the isolated 3 -3 strain was verified to be the pathogen causing floating seedling disease, which was consistent with the characteristics of Pectobacterium carotovo- rum subsp. Carotovorum through Biolog determination and the other physiological and biochemical methods. 16S rDNA sequence analysis showed that 3 -3 strain had the highest similarity with P. carotovorum subsp. Carotovorum strains Kun28213 (accession number GU936996), reaching 99. 9%. [Conclusion] Base on the identification results of several methods, the pathogen causing floating seedling disease was P. carotovorum subsp. Carotovorum, and the disease was first reported in China. According to the English name of the disease, the disease was called as tobacco blackleg disease.
文摘Gait event detection is important for diagnosis and evaluation. This is a challenging endeavor due to subjectivity, high amount of data, among other problems. ANFIS (Artificial Neural Fuzzy Inference Systems), ARX (Autoregressive Models with Exogenous Variables), OE (Output Error models), NARX (Nonlinear Autoregressive Models with Exogenous Variables) and models based on NN (neural networks) were developed in order to detect gait events without the problems mentioned. The objective was to compare developed models' performance and determinate the most suitable model for gait events detection. Knee joint angle, heel foot switch and toe foot switch during normal walking in a treadmill were collected from a healthy volunteer. Gait events were classified by three experts in human motion. Experts' mean classification was obtained and all models were trained and tested with the collected data and experts' mean classification. Fit percentage was obtained to evaluate models performance. Fit percentages were: ANFIS: 79.49%, ARX: 68.8%, OE: 71.39%, NARX: 88.59%, NNARX: 67.66%, NNRARX: 68.25% and NNARMAX: 54.71%. NARX had the best performance for gait events classification. For ARX and OE, previous filtering is needed. NN's models showed the best performance for high frequency components, ANFIS and NARX were able to integrate criteria from three experts for gait analysis. NARX and ANFIS are suitable for gait event identification. Test with additional subjects is needed.
文摘Adaptive truss structures are a new kind of structures with integrated active members,whose dynamic characteristies can be beneficially modified to meet mission requirements.Active members containing actuating and sensing units are the major components of adaptive truss structures.Modeling of adaptive truss structures is a key step to analyze the structural dynamic characteristics.A new experimental modal analysis approach,in which active members are used as excitatiDn sources for modal test,has been proposed in this paper.The excitation forces generated by the active members, which are different from the excitation forces exerted on structures in the conventional modal test,are internal forces for the truss structures.The relation between internal excitation forces and external forces is revealed such that the traditional identification method can be adopted to obtain modal parameters of adaptive structures.Placement problem of the active member in adaptive truss structures is also discussed in this work. Modal test and analysis are conducted with a planar adaptive truss structure by using piezoelectric active members in order to verify the feasibility and effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (No. 31071938, 31101646)the Key Project of the Chinese Ministry of Education (No. 212136)the Program for New Century Excellent Talents in University(NCET-10-0111)
文摘Interaction between a parasite and its host could lead to a co-evolutionary arms race. Cuckoo-host system is among the most studied of all brood parasite systems, but the cuckoos of Asia, on the other hand, are much less well known. China has the most abundant cuckoo species in Asia. Many of these co-occur in sympatric areas, posing a potential risk of mis-identification of cuckoo nestlings, especially in Cuculus species. In this study we have provided a practical criterion to identify cuckoo nestlings species in the field and performed molecular phylogeny to confirm our empirical results. These results indicate that two distinct characteristics of cuckoo nestlings, i.e., the gape color pattern and feather traits can be considered as reliable species identification. To our knowledge, this is the first report for species identification of Cuculus nestlings through molecular analysis.
文摘Aim The RFB (radial hats function) netal network was studied for the model indentificaiton of an ozonation/BAC system. Methods The optimal ozone's dosage and the remain time in carbon tower were analyzed to build the neural network model by which the expected outflow CODM can be acquired under the inflow CODM condition. Results The improved self-organized learning algorithm can assign the centers into appropriate places , and the RBF network's outputs at the sample points fit the experimental data very well. Conclusion The model of ozonation /BAC system based on the RBF network am describe the relationshipamong various factors correctly, a new prouding approach tO the wate purification process is provided.
基金financially supported by the National Natural Science Foundation of China(Grant No.51279106)the Special Research Fund for the Doctoral Program of Higher Education of China(Grant No.20110073110009)
文摘Based on support vector machines, three modeling methods, i.e., white-box modeling, grey-box modeling and black-box modeling of ship manoeuvring motion in 4 degrees of freedom are investigated. With the whole-ship mathematical model for ship manoeuvring motion, in which the hydrodynamic coefficients are obtained from roll planar motion mechanism test, some zigzag tests and turning circle manoeuvres are simulated. In the white-box modeling and grey-box modeling, the training data taken every 5 s from the simulated 20°/20° zigzag test are used, while in the black-box modeling, the training data taken every 5 s from the simulated 15°/15°, 20°/20° zigzag tests and 15°, 25° turning manoeuvres are used; and the trained support vector machines are used to predict the whole 20°/20° zigzag test. Comparisons between the simulated and predicted 20°/20° zigzag tests show good predictive ability of the proposed methods. Besides, all mathematical models obtained by the proposed modeling methods are used to predict the 10°/10° zigzag test and 35° turning circle manoeuvre, and the predicted results are compared with those of simulation tests to demonstrate the good generalization performance of the mathematical models. Finally, the proposed modeling methods are analyzed and compared with each other in aspects of application conditions, prediction accuracy and computation speed. The appropriate modeling method can be chosen according to the intended use of the mathematical models and the available data needed for system identification.